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ABSTRACT
Raffinose family oligosaccharides (RFOs), the a-galactosyl derivatives of sucrose, are nearly ubiqui-
tous in Plantae, and they have been demonstrated to play pivotal roles in regulating plant
responses to various abiotic stresses. RFOs accumulate to high levels in plant kernels/fruits or
vegetative parts and are commonly associated with storability and desiccation or cold tolerance.
Recent studies have also revealed the regulatory roles of RFOs in seed germination, plant devel-
opment, and biotic stress resistance. Here, we provide an overview of the metabolism, transport,
and evolution of RFOs as well as their physiological importance in plants. Recent research high-
lights the general importance of RFOs in plant development and stress response.
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I. Introduction

As sessile organisms, plants encounter changing envir-
onmental conditions including stresses, which can
significantly impair their growth, development, and
productivity (El Sayed et al., 2014; Sharma et al., 2019).
To survive, plants have evolved numerous mechanisms
to cope with suboptimal environments; these include
triggering a series of signal transduction responses and
accumulating compatible metabolic substances. These
substances include quaternary compounds, amino acids,
soluble sugars, and raffinose family oligosaccharides
(RFOs) (El Sayed et al., 2014). RFOs, such as raffinose,
stachyose, and verbascose, are derived from sucrose and
activated galactose moieties, which are donated by
galactinol. Galactinol and raffinose are ubiquitous in
plants and have been demonstrated to play important
roles in seed desiccation tolerance/seed storability
(Sengupta et al., 2015; Li et al., 2017; Jing et al., 2018).
In recent years, more and more evidence has demon-
strated the involvement of galactinol and RFOs in vari-
ous abiotic stress responses in plants, and in general,
the levels of RFOs (or galactinol) in different tissues can

be used as an indicator of the degree of stress tolerance
in plants (Sengupta et al., 2015; Selvaraj et al., 2017;
Han et al., 2020). The associations between RFOs (or
galactinol) and plant development and biotic stresses
have also been demonstrated by several recent studies
(Unda et al., 2017; Zhou et al., 2017; La Mantia et al.,
2018; Hua et al., 2021; Liu et al., 2022). These findings
have greatly broadened our knowledge of the intrinsic
molecular mechanisms underlying plant stress tolerance
and disease resistance. In this review, we summarize the
transport, evolution, and physiological importance of
RFO metabolism pathways in plants with an emphasis
on the specific functions of RFOs in development and
stress responses. Finally, future research directions
including the potential use of RFOs for crop improve-
ment are discussed.

II. RFO metabolism in plants: biosynthesis
and catabolism

RFOs are synthesized through the sequential addition of
galactosyl moieties to sucrose by the action of a-galacto-
syltransferases, resulting in a series of oligosaccharides
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with degrees of polymerization up to 15 (Peterbauer and
Richter, 2007). The biosynthesis of RFOs has been thor-
oughly studied in several plant species including Ajuga
reptans, Medicago sativa, and Arabidopsis thaliana
(Bachmann et al., 1994; Bl€ochl et al., 2005; Iftime et al.,
2011; Sengupta et al., 2015).

To date, two pathways have been identified for RFO
biosynthesis. One is the galactinol-dependent pathway
(Figure 1). The first key step of this pathway is the
synthesis of galactinol from UDP-galactose and L-
myo-inositol by galactinol synthase (GolS) (Peterbauer
et al., 2001; Sengupta et al., 2015). Raffinose is then
formed by the addition of galactose units from galacti-
nol to sucrose in a reaction catalyzed by raffinose syn-
thase (RS), whereas stachyose is synthesized by the
addition of galactose units from galactinol to raffinose
in a reaction catalyzed by stachyose synthase (STS)
(Peterbauer et al., 2001; Sengupta et al., 2015). The
second RFO biosynthetic pathway is the galactinol-
independent pathway (Figure 1), which has been iden-
tified in A. reptans and Coleus blumei; this pathway
includes galactan: galactan galactosyltransferase (GGT),
which belongs to the acid a-galactosidase (AGAL) pro-
tein family (Bachmann et al., 1994; Gilbert et al., 1997;
Haab and Keller, 2002; Tapernoux-L€uthi et al., 2004;
Elango et al., 2022). GGT catalyzes the chain elong-
ation of RFOs by transferring a terminal galactosyl
moiety from one RFO molecule to one another. For
instance, GGT can produce raffinose and verbascose
when incubated with stachyose (Bachmann et al., 1994;
Bachmann and Keller, 1995). However, it should be
noted that GGT enzymatic activity has been found in
leaves but not in seeds, suggesting that the galactinol-
independent RFO synthesis pathway may exist in plant
leaves, but not in plant seeds.

RFO catabolism in plants has received relatively lit-
tle attention even though this process is as important
as the biosynthesis reaction. RFOs are hydrolyzed to
sucrose and D-galactose by the action of AGAL and
alkaline a-galactosidase (AGA) (Bl€ochl et al., 2008;
Sengupta et al., 2015). The resulting sucrose and D-
galactose may either be used as energy sources or reu-
tilized to form RFOs (Bl€ochl et al., 2008). To serve as
an energy source, sucrose can be degraded into glu-
cose and fructose by invertase or into UDP-glucose
and fructose by sucrose synthase (Ruan, 2014).
Subsequently, glucose, fructose, and D-galactose
can readily enter other metabolic pathways. Free
D-galactose can be rapidly converted into galactose-1-
phosphate by GalK and further metabolized either by
the conventional Leloir pathway or by a pyrophos-
phorylase-dependent pathway (Peterbauer et al., 2001;

Sengupta et al., 2015). Intriguingly, all RFO biosyn-
thesis and catabolism reactions are reversible.

III. The source-to-sink transport of RFOs
in plants

In plants, <80% of carbohydrates produced by photo-
synthesis in leaves are exported to heterotrophic tis-
sues and organs to enable their growth and
development (Kalt-Torres et al., 1987; Ainsworth and
Bush, 2011; K€olling et al., 2013; Brauner et al., 2018).
Sucrose is the major carbohydrate used for long-
distance transport. The initial step of source-to-sink
transport of sucrose is phloem transport, which is the
transfer of sugars from mesophyll cells (MCs) to com-
panion cells (CCs) and then the sieve elements (SEs)
of minor veins (Knop et al., 2001; Voitsekhovskaja
et al., 2006; McCaskill and Turgeon, 2007). As shown
in Figure 2, the two main phloem loading strategies in
most species are apoplasmic loading and passive sym-
plasmic loading. The former is a transporter-mediated
and energy-coupled process, while the latter is an
osmotic driving force-dependent process with sucrose
transport from MCs to CCs occurring via plasmo-
desma (Rennie and Turgeon, 2009; Slewinski and
Braun, 2010; Ma et al., 2019). In addition, some tree
species use an active symplastic loading strategy in
addition to the passive strategy, such as the gymno-
sperm Gnetum gnemon and the angiosperms Quercus
robur, Fraxinus excelsior, Fagus sylvatica, and
Magnolia kobus (Liesche et al. 2011; €Oner-Sieben and
Lohaus 2014; Fink et al., 2018). Following long-
distance transport through SEs and arrival at the sink
tissues, the same strategies are used for phloem
unloading, i.e., active apoplasmic unloading or passive
symplasmic unloading (Oparka et al., 1999; Stadler
et al., 2005a, 2005b; Ma et al., 2019). Sucrose is then
used directly to provide carbon and energy for growth
and development or metabolized into RFOs or starch
for storage in sink tissues (Ruan and Patrick, 1995;
Ruan et al., 2001).

A third phloem loading strategy, polymer-trapping
loading, is used in a limited number of plant families,
such as Cucurbitaceae, Lamiaceae, and Oleaceae
(Figure 2; Rennie and Turgeon, 2009; Gil et al., 2011;
Ma et al., 2019). In this strategy., raffinose and
stachyose, rather than sucrose, are the predominant
carbohydrates transported in phloem. In the polymer-
trapping loading model, sucrose produced by
photosynthesis in leaves diffuses into specialized CCs
(intermediary cells, ICs) from MCs through special-
ized plasmodesmata, where it is then polymerized to
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Figure 1. The proposed RFO metabolism pathway in plants. a-D-galactose is phosphorylated by galactokinase (GalK, EC 2.7.1.6)
to form galactose-1-phosphate. Then, a uridine monophosphate (UMP) group is transferred from UDP-glucose to galactose-
1-phosphate by galactose-1-phosphate uridylyltransferase (GalT), producing glucose-1-phosphate and UDP-galactose (Peterbauer
et al., 2001; Coelho et al., 2015). GolS: galactinol synthase; RS: raffinose synthase; STS: stachyose synthase; VES: verbascose syn-
thase; AGA: alkaline a-galactosidase; AGAL: acid a-galactosidase; GGT: galactan: galactosyl-transferase.
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form RFOs, i.e., raffinose and stachyose (Yadav et al.,
2015). RFOs are thought to be unable to diffuse back
to the MCs on account of their larger size, and they
enter the SEs through wider plasmodesmata-pore

units (Hannah et al., 2006; Zhang and Turgeon,
2018). In sink tissues, RFOs are unloaded from the
phloem, and AGAs hydrolyze the RFOs to sucrose
and galactose, which can also be partitioned via the

Figure 2. A proposed model of RFO transport in plants. SC: sink cell; PPC: phloem parenchymal cell; CC: companion cell; IC: inter-
mediate cell (specialized CC); SE: sieve element; MC: mesophyll cell; TP: triose phosphate; Fru: fructose; Glu: glucose; Raf: raffinose;
Sta: stachyose; Gal: galactinol; Myo-Iso: myo-inositol.
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apoplasmic pathway. The RFO transport pathway was
recently demonstrated to function in sweet water-
melon (Citrullus lanatus) and cucumber (Cucumis sat-
ivus). In these species, the alkaline AGA genes
ClAGA2 (Ren et al., 2021) and CsAGA2 (Liu et al.,
2022) were identified as the key factors controlling
stachyose and raffinose hydrolysis, and they were
found to be specifically expressed in the vascular bun-
dle. Ren et al. (2021) showed that knocking out
AGA2, Sugars Will Eventually Be Exported
Transporter 3 (SWEET3), and Tonoplast Sugar
Transporter 2 (TST2) affected fruit sugar accumula-
tion in C. lanatus.

In A. reptans which is a frost-hardy, perennial
labiate that contains high levels of RFOs, two differ-
ent RFO pools are observed (Figure 2). One is a
long-term storage pool of RFOs, which are synthe-
sized in the MCs, and the other is a transport pool
of RFOs, which are synthesized in the phloem. The
storage RFOs serve as an energy source and support
frost tolerance, while the transport RFOs enter sink
tissues to maintain plant growth (Bachmann et al.,
1994; Bachmann and Keller, 1995; Kannan et al.,
2018). Interestingly, isoforms encoded by two allelic
variants of GolS (ArGolS1 and ArGolS2) from A.
reptans display different roles in RFO biosynthesis
as evidenced by their differential gene expression
and enzyme activity (Sprenger and Keller, 2000).
ArGolS1 is primarily expressed in MCs and is
involved in the synthesis of storage RFOs, whereas
ArGolS2 is predominantly expressed in ICs and is
involved in the synthesis of transport RFOs. Further
compartmentalization analysis of MCs revealed that
the RFO transport pool, GGT, stachyose, and ver-
bascose are all vacuolar localized, whereas the RFO
storage pool, GolS, STS, and galactinol are located
outside the vacuole, and raffinose is distributed in
both the cytosol and the vacuole (Bachmann et al.,
1994; Bachmann and Keller, 1995; Kannan et al.,
2018). It was proposed that stachyose is synthesized
outside the vacuole (probably in the cytosol) and
then transported into the vacuole via a stachyose
transporter in the tonoplast, although multi-omics
evaluation of the tonoplast membrane did not iden-
tify this transport protein (Tohge et al., 2011). A
later report indicated that raffinose, which accumu-
lates in the chloroplasts of cold-treated A. reptans,
is originally synthesized outside the chloroplast and
subsequently taken up into the chloroplast by a raf-
finose transporter on the chloroplast envelope
(Schneider and Keller, 2009). A shift in carbohy-
drates (mainly RFOs) from the cytosol to the

vacuole and chloroplast, and from winter leaves to
summer leaves, has also been identified in A.
reptans, suggesting that RFOs play important roles
in frost tolerance in this evergreen plant (Findling
et al., 2015).

Several studies have shown that the metabolism
and transport of RFOs can be affected by exogenous
stress treatment or by overexpression of the key RFO
metabolism enzymes in plants (Gilbert et al., 1997;
Ayre et al., 2003; Hannah et al., 2006; McCaskill and
Turgeon, 2007; Obata and Fernie, 2012). For example,
salt stress significantly induces the accumulation of
RFOs (verbascose and raffinose) in both the source
and white sink tissues of Coleus blumei, with stressed
plants preferentially transporting sucrose over RFOs,
as determined by phloem-sap analysis (Gilbert et al.,
1997). Galactinol is the second most abundant sugar
synthesized in the ICs of C. blumei, but galactinol
accumulation is also observed in non-phloem com-
partments, such as MCs, in transgenic tobacco plants
with CC-specific overexpression of CmGolS1 (Ayre
et al., 2003). Hence, these transgenic tobacco plants
accumulate large amounts of galactinol in the leaves,
but long-distance transport of galactinol is limited,
with only a small amount being transported to sink
tissues. Moreover, in transgenic potato plants display-
ing constitutive or CC-specific overexpression of GolS
or GolS in combination with RS, both galactinol and
raffinose were transported in the phloem. However,
although significant amounts of galactinol were
observed in the phloem, only a small amount of raf-
finose was able to be transported even when there was
a high concentration of raffinose (Hannah et al.,
2006). In addition, simultaneous silencing of two
GolS genes (VpGolS1 and VpGolS2) in Verbascum
phoeniceum resulted in the inhibition of both RFO
biosynthesis and RFO transport in phloem (McCaskill
and Turgeon, 2007).

IV. Evolution of RFO metabolism in plants

To investigate the evolution of RFO metabolic path-
ways in plants, we searched for genes encoding hom-
ologous proteins of GolS, RS/STS, AGAL, and AGA,
which are involved in RFO catabolism, in 26 repre-
sentative plant species from nine plant lineages,
namely glaucophytes, rhodophytes, chlorophytes,
charophytes, bryophytes, lycophytes, gymnosperms,
monocots, and dicots (Figure 3A), and performed
BLAST analyses using HMMER software. After
removal of redundant and incomplete protein
sequences which may be encoded by pseudogenes, a
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total of 45 GolSs, 15 RS/STSs, 59 AGAs, and 82
AGALs were identified (Figure 3A and Table 1). The
number and distribution of these key enzyme genes
in the selected representative species were distinctly
different. AGA and AGAL were found in most of the
species examined including algae, with the number

of paralogous genes ranging from 1 to 14. GolSs
were found in all vascular plants and in charophyte
algae with 2 to 11 paralogous genes, whereas RS/STS
genes were only found in gymnosperms, monocots,
and dicots with 1 to 4 paralogous genes (Figure 3A).
These observations suggested that gene expansion

Figure 3. Phylogenetic relationships between key RFO metabolic enzymes in plants. (A) The distribution of key enzymes in plant
lineages from glaucophytes to angiosperms. (B) The phylogenetic relationships between the key enzymes in 26 plant species. Each
member of the GolS, RS/STS/AGA, and AGAL protein families were grouped into different branches based on their protein
sequence homology. (C) A model for the evolution of RFO metabolic enzymes in the glaucophyte to angiosperm lineages based
on phylogenetic data is shown in Figure 3B. In this model, key enzymes of the RFO metabolic pathway were gained and/or lost
during the divergence of the aquatic algae and land plant lineages. One of the key rate-limiting enzymes in RFO synthesis, GolS,
was gained in Charophytes but lost in Bryophytes. The other rate-limiting enzymes in RFO synthesis, i.e., RS and STS, first evolved
from GH36 proteins in the most recent common ancestor of the gymnosperm, monocots, and dicots and were retained in
all lineages.
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and gene loss occurred during the evolution of the
RFO metabolic pathway in plants.

Phylogenetic analysis revealed that the clustering of
GolSs, which belong to glycosyl transferase family 8
(GT8), is consistent with the evolutionary relation-
ships of plant species (Figure 3B). RS/STS and AGA
proteins belong to the glycosyl hydrolase family 36
(GH36), and the GH36 family was classified into four
subfamilies, i.e. AGA I, AGAII, AGAIV, and RS/STS
(Figure 3B). Unlike subfamily I, which contained
sequences found in most of the plant lineages, from
charophytes to monocots and dicots, subfamilies II,
RS/STS, and IV only contained sequences from chlor-
ophytes, vascular plants (gymnosperms, monocots,
and dicots), and rhodophytes, respectively. These
observations suggest that the functions of GH36 pro-
teins have diverged during plant evolution, resulting
in the specialized functions of the RS/STS subfamily
members, which have been demonstrated to harbor
multifunctional RFO synthase/galactosyl hydrolase
activities. For example, the maize RS ZmRS
(Zm00001d039685) displays both raffinose synthesis
and galactinol hydrolysis activities (Li et al., 2020),
while Arabidopsis AtRS4 (also named AtSTS,
AT4G01970) exhibits not only stachyose synthesis
activity but also stachyose- and galactinol-specific
hydrolysis activity (Gangl et al., 2015). AGALs, which
belong to glycosyl hydrolase family 27 (GH27), were
classified into three subfamilies (I–III), with subfamily
I present in most plant lineages from glaucophytes
(Cyanophora paradoxa) to monocots and dicots.
However, subfamilies II and III were only present in
chlorophytes/charophytes and land plants (bryophytes,
lycophytes, gymnosperms, monocots, and dicots),
respectively (Figure 3B). The GGT enzyme in A.
reptans, which belongs to AGAL subfamily I, can cata-
lyze the chain elongation of RFOs and produce raffin-
ose and verbascose (Bachmann et al., 1994; Bachmann
and Keller 1995), which suggests that AGALs may
also harbor multifunctional RFO synthase/galactosyl
hydrolase activities.

The key enzymes of the RFO metabolic pathway
were gained and/or lost during the divergence of the
aquatic algae and land plant lineages. AGAs and
AGALs were present in the common ancestor but
subsequently evolved into AGAL I proteins in glauco-
phytes and AGA IV proteins in rhodophytes (Figure
3C). Thereafter, specialized subfamilies, such as GAL
II and III and AGA II and III also evolved. The key
rate-limiting enzyme in RFO synthesis, GolS, was
gained in Charophytes, but lost in Bryophytes,
whereas RSs and STSs evolved from GH36 proteins in

the most recent common ancestor of the gymno-
sperm, monocots, and dicots and were retained in all
lineages (Figure 3C).

In plants, there are two pathways for RFO biosyn-
thesis: a galactinol (a-galactosyl-myo-inositol)-dependent
pathway and a galactinol-independent pathway. The for-
mer pathway, in which one or two a-galactosyltransfer-
ase steps (RS, EC 2.4.1.82, and STS, EC 2.4.1.67) result
in the biosynthesis of short-chain RFOs, such as raffin-
ose and stachyose, has been comprehensively studied.
Strikingly, although there are no RS or STS homologs
in chlorophytes, raffinose was detected in some algae,
such as Chlorella variabilis and Spirulina platensis (de
Medeiros et al., 2021), suggesting that AGAs other than
RS or STS may be involved in raffinose biosynthesis in
chlorophytes. However, we should point out that the
presence of a metabolite may be due to contamination
of a culture with a species that genuinely synthesize it
(Tohge et al., 2013). The galactinol-independent path-
way is regarded as being involved in the biosynthesis of
long-chain RFOs, such as verbascose, and it catalyzes
the transfer of an a-galactosyl residue from one RFO
molecule to another, resulting in higher-order RFO
oligomers. Indeed, GGT has been shown to catalyze the
biosynthesis of long-chain RFOs in A. reptans
(Bachmann et al., 1994; Bachmann and Keller, 1995).
This observation, combined with the phylogenetic rela-
tionship of RS/STS/AGAs and GALs, leads us to specu-
late that the galactinol-dependent pathway for short
RFO biosynthesis may be present in all green lineages,
while the galactinol-independent pathway may occur
only in certain land plants, such as A. reptans, and may
have evolved as an environmental adaptation. Indeed,
the specialized RS/STS subfamily likely coevolved with
vascular development in higher plants, which are also
adapted to the land environment. In fact, the transition
of plants from aquatic to terrestrial environments
required plant adaptation to drought-stress environ-
ments. In addition to structural changes in the vascular
sheath, the emergence of new metabolic pathways and/
or metabolites is also a means of plant adaptation to
drought-stress environments. RFOs, especially raffinose,
is thought to play a role in plant drought stress toler-
ance because of the increased raffinose accumulation
observed in leaves when plants encounter drought stress
(Egert et al., 2016; Li et al., 2020).

V. The potential roles of RFOs in plant
development

Several studies have demonstrated the regulatory roles
of RFOs in plant growth and development. During

CRITICAL REVIEWS IN PLANT SCIENCES 7



seed germination, RFOs cannot be used directly and
need to be broken down into sucrose and galactose by
the hydrolytic enzyme AGAL. A recent report demon-
strated that AGAL activity gradually increases during
seed maturation and early germination in Cicer
arietinum, with the latter stage requiring more energy
(Arunraj et al., 2020). When the breakdown of RFOs
in pea seeds is blocked by treatment with 1-
deoxygalactono jirimycin (DGJ), a galactosidase-
specific inhibitor, the treated seeds have a significantly
lower germination rate, accompanied by depressed
activities of GalK and UDP-galactose pyrophosphory-
lase, when compared with the control seeds (Bl€ochl
et al., 2007). The inhibition of germination could be
relieved by the addition of exogenous galactose and
partially relieved by the addition of exogenous sucrose
(Bl€ochl et al., 2007), suggesting that the content of
galactose rather than sucrose was positively correlated
with seed germination. Similarly, wild-type soybean
seeds also show a delay in germination when treated
with DGJ. However, soybean seeds with low RFO
content (18% raffinose and 33% stachyose) show no
significant differences in germination compared with
wild-type seeds under normal conditions, and no
remarkable delay in germination was observed when
the low-RFO seeds were treated with DGJ (Dierking
and Bilyeu, 2009). These results suggest that unlike in
C. arietinum RFOs are not essential for soybean seed
germination; however, sucrose levels in low-RFO seeds
were significantly higher than those in the wild-type
plants (Dierking and Bilyeu, 2009), which might at
least partially explain the lack of effect of RFO content
on the germination of soybean seeds. RS4/5 double
knock-out Arabidopsis seeds exhibited a five-day delay
in germination in darkness and upregulated expres-
sion of a repressor of germination; these phenotypes
were attributed to the absence of RFOs in germinated
seeds (Gangl and Tenhaken, 2016). Taken together,
previous studies indicate that the levels of RFOs and
RFO pathway-derived metabolites are closely related
to seed germination, but the exact function of RFOs
varies among different seeds.

Three recent reports demonstrated that RFOs are
also involved in the growth and development of
hybrid poplar (Populus alba � grandidentata) and
cucumber (Unda et al., 2017; Hua et al., 2021; Liu
et al., 2022). Transgenic poplar plants with the highest
levels of AtGolS3 transgene expression formed tension
wood, as manifested by an increased number of ves-
sels and the appearance of a G-layer in the fibers,
whereas transgenic poplar plants with moderate
AtGolS3 expression showed only moderate alterations

in secondary cell wall composition and ultrastructure,
such as lower lignin and higher cellulose contents
(Unda et al., 2017). In cucumber, transcription of
CsAGA1 was found to gradually increase during fruit
development, especially in the fruit vasculature.
CsAGA1-overexpressing plants showed bigger fruits
compared with wild type, whereas CsAGA1-RNAi
plants exhibited delayed fruit development due to
altered hexose production in the peduncle and main
vascular bundle of the fruit (Hua et al., 2021). Further
analysis showed that manipulation of CsAGA2 expres-
sion influences phloem loading, sugar production, and
exportation from leaves and petioles, and thus affects
cucumber fruit set and development (Liu et al., 2022).
These results collectively illustrate that ectopic expres-
sion of GolS/AGA influences RFO metabolic pathways
and that RFO may function as a molecular signal to
trigger a series of metabolic changes, ultimately
impacting sugar transport, cell differentiation, and
development in plants (Unda et al., 2017).

VI. The roles of RFOs in plant abiotic
stress tolerance

A. The roles of RFOs in seed desiccation tolerance,
seed storability, and seed vigor

Desiccation tolerance, which is necessary for the mat-
uration of orthodox seeds, refers to the ability of seeds
to withstand dehydration, to reduce the deleterious
effects of dehydration and slow their metabolic activ-
ity, and finally to maintain viability in a dry state for
a long period of time (Wang et al., 2015; Jing et al.,
2018). There is evidence that RFOs play a key role in
desiccation tolerance. For example, the GolS enzymes
are significantly upregulated in the alpine aeroterres-
trial alga Klebsormidium crenulatum under strong des-
iccation-stress conditions (Holzinger et al., 2014), and
raffinose accumulation is associated with the acquisi-
tion of desiccation tolerance as well as the tolerance
to high-temperature drying in cereal seeds (Chen and
Burris, 1990; Brenac et al., 1997). Conversely, loss of
raffinose accumulation is accompanied by the loss of
desiccation tolerance during the germination of maize
seeds (Koster and Leopold, 1988). More recently, the
positive correlation between RFOs and seed desicca-
tion tolerance has been further validated by overex-
pressing GolS1, GolS2, and/or RS5 in Arabidopsis
(Jing et al., 2018). The resultant transgenics display
higher levels of RFOs and greater desiccation toler-
ance than the wild-type plants, whereas gos1 gos2
double mutant plants and rs5 single mutant plants,
which have lower levels of RFOs, exhibit delayed
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acquisition of desiccation tolerance compared with
the wild-type plants (Jing et al., 2018). High RFO
levels might be required to maintain a steady state
level of reducing monosaccharide sugars to confer
desiccation tolerance to seeds, starting from dry
seeds to all the way through the post-germination
stage (Arunraj et al., 2020).

Seed storability, defined as the longevity of seeds
after storage, is partially correlated with seed desicca-
tion tolerance, and seed vigor is also closely correlated
with seed longevity (Bentsink et al., 2000; Gurusinghe
and Bradford, 2001). As a result, seeds with good des-
iccation tolerance frequently exhibit longer seed lon-
gevity and higher seed vigor. In addition to playing
important roles in desiccation tolerance, high levels of
RFOs are also required for maintaining seed vigor or
longevity in plants (Bernal-Lugo and Leopold, 1992;
Pukacka et al., 2009; Vandecasteele et al., 2011; de
Souza Vidigal et al., 2016; Salvi et al., 2016; Li et al.,
2017; Han et al., 2020). In hybrid rice seed, the level
of raffinose is positively correlated with the seed ger-
mination rate under natural aging conditions (Yan
et al., 2018), but the galactose content is negatively
correlated with the seed germination rate under both
natural and artificial aging conditions (Chen et al.,
2022). In maize seeds, a low level of raffinose is asso-
ciated with lower seed vigor (Bernal-Lugo and
Leopold, 1992). Consistent with this, the maize
Dehydration-Responsive Element-Binding 2A mutant
(zmdreb2a) exhibits decreased seed longevity due to
reduced expression of a ZmRS gene and a decreased
level of raffinose accumulation in the embryo (Han
et al., 2020). In Arabidopsis, overexpression of
ZmAGA1, which decreases both RFO and galactinol
contents in mature seeds, results in a higher seed ger-
mination percentage but decreased seed aging toler-
ance (Zhang et al., 2021). Further analysis showed
that RFO levels were lowest in imbibed ZmAGA1
overexpressing seeds and rapidly increased post-
imbibition. When seeds transitioned to the germin-
ation stage, the RFOs were rapidly hydrolyzed to
monosaccharide sugars, which may be incorporated
into either cell membranes or cell walls of the growing
shoot and root tips, providing energy leading to
increased germination vigor (Zhang et al., 2021).
Intriguingly, Li et al. (2017) found that monocot and
dicot plants have different requirements for RFOs in
modulating seed vigor. An important discovery was
that raffinose is the only RFO that accumulates in
seeds of the monocot maize, and the seeds of the
zmrs mutant, which lacks raffinose, show remarkably
reduced vigor even though they survive desiccation.

By contrast, several RFOs (raffinose, stachyose, and
verbascose) are detected in the seeds of Arabidopsis. It
seems that seed vigor of Arabidopsis is positively cor-
related with either the total RFO content or the RFO/
sucrose ratio, instead of the absolute amounts of indi-
vidual RFOs, and moreover, that stachyose and ver-
bascose contribute more than raffinose to seed vigor
in Arabidopsis (Li et al., 2017). Nevertheless, in some
plant species, there is no direct association between
RFOs and desiccation tolerance or seed vigor
(Bentsink et al., 2000; Gurusinghe and Bradford, 2001;
Dierking and Bilyeu, 2009), suggesting that a broader
analysis of this phenomenon is necessary. In conclu-
sion, these observations demonstrate the pivotal roles
of RFOs in controlling desiccation tolerance, storabil-
ity, and vigor of plant seeds, and show that the spe-
cific roles of RFOs in these processes might be plant
species-dependent to some extent.

B. The roles of RFOs in temperature
stress tolerance

Extreme low (cold, chilling, or frost) and high temper-
atures, can have highly detrimental effects on plant
growth and crop yield worldwide (Suzuki, 2019).
Previous studies have indicated that cold treatment
induces the accumulation of raffinose in both cold-
tolerant and cold-sensitive Arabidopsis and rice acces-
sions but that raffinose levels are remarkably higher in
cold-tolerant accessions than in cold-sensitive acces-
sions (Klotke et al., 2004; Morsy et al., 2007; N€agele
and Heyer, 2013). Keller et al. (2021) demonstrated
that accumulation of raffinose in the pith tissue is cor-
related with freezing tolerance of both freezing–
sensitive and freezing-tolerant sugar beet. Increased
transcription levels of the GolS and RS genes as well
as the accumulation of raffinose were also observed in
rice seedlings exposed to chilling stress, and in grape-
vine woody tissues subjected to cold stress (Saito and
Yoshida, 2011). Moreover, excised A. reptans leaves
accumulated more RFOs during frost treatment under
temperatures ranging from �10.5 to �24.5 �C, with
more severe damage being observed in photosystem II
in the RS mutant than in the corresponding wild-type
plants during freezing (Peters and Keller, 2009;
Knaupp et al., 2011). A recent report demonstrated
that the maize zmrs mutant lines, in which raffinose is
eliminated, show decreased tolerance to cold stress
compared with control plants. Further analysis also
verified that the maize ZmDREB1A protein can bind
directly to the promoter of ZmRS to activate its
expression, and consequently lead to the accumulation
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of raffinose and increased cold tolerance in maize
(Han et al., 2020). Similarly, ethylene-responsive fac-
tor 108 (ERF108) has been observed to directly target
an RS enzyme gene to modulate the cold stress
response of trifoliate orange (Poncirus trifoliata L.)
(Khan et al., 2021). Moreover, calmodulin-like protein
42 (MtCML42) has been demonstrated to positively
regulate the C-repeat binding factor (CBF) pathway,
which in turn increases the transcription of MtGolS1
and MtGolS2, resulting in raffinose accumulation and
enhanced cold tolerance in Medicago truncatula (Sun
et al., 2021). These results together suggest a positive
role of RFOs in plant cold stress response.

Plants acquire heat stress tolerance through pri-
ming, which enables them to build stress memory
when subjected to heat stress. A recent report found
that primed plants perform better than non-primed
plants under heat stress, partially because of increased
RFO contents, suggesting an important role of RFOs
in plant heat stress tolerance (Serrano et al., 2019).
Indeed, researchers demonstrated that overexpression
of chickpea (Cicer arietinum) CaGolS1 and CaGolS2,
which are strongly induced by heat and oxidative
stress, results in increased galactinol and raffinose
contents as well as enhanced heat and oxidative stress
tolerance through a reduced accumulation of reactive
oxygen species (ROS) and consequent lipid peroxida-
tion in Arabidopsis transgenic plants (Salvi et al.,
2018). Furthermore, Arabidopsis plants overexpressing
ZmGolS2 showed increased heat stress tolerance,
which was attributed to the enhanced galactinol and
raffinose contents (Gu et al., 2016). Recently, overex-
pression of the heat shock factor A2 (ZmHSFA2) in
Arabidopsis plants was found to lead to increased
transcription of AtGolS1, AtGolS2, and AtRS5,
increased raffinose levels in leaves and enhanced heat
tolerance, whereas overexpression of the maize heat
shock binding protein 2 (ZmHSBP2) in Arabidopsis
reduced the expression of AtGolS1, AtGolS2, and
AtRS5, which prevented raffinose accumulation in
leaves and decreased heat tolerance (Gu et al., 2019).
In summary, all these results indicate the positive
regulatory roles of RFOs in temperature stress
response in plants.

C. The roles of RFOs in tolerance to drought, salt,
and oxidative stresses

In addition to their roles in temperature stress, RFOs
are also associated with enhanced drought stress toler-
ance in plants; for example, there is a strong accumula-
tion of RFOs (raffinose, stachnose, and verbascose) in

the resurrection plant Xerophytaviscosa when it is sub-
jected to drought stress treatment (Peters et al., 2007)
Overexpression of AtGolS2 in Brachypodium distachyon,
Arabidopsis, and rice also remarkably increases drought
tolerance (Taji et al., 2002; Himuro et al., 2014; Selvaraj
et al., 2017). Transgenic rice plants overexpressing
AtGolS2 exhibit increased galactinol content, grain yield
in terms of panicle number, and grain fertility com-
pared with control plants. In addition, ectopic expres-
sion of BhGolS1 leads to significant accumulation of
galactinol and raffinose as well as elevated drought tol-
erance in tobacco, and ectopic expression of CsGolS4
results in increased galactinol and stachyose contents
and improved drought tolerance in cucumber (Ma
et al., 2021). Interestingly, the expression of BhGolS1
was found to be directly activated by the BhWRKY1
gene via the binding of BhWRKY1 to W-box elements
in the BhGolS1 promoter (Wang et al., 2009).
Modulating the expression of RS genes has also been
found to result in altered drought stress responses in
plants. The maize Zmrs mutant, which lacks raffinose,
shows decreased drought tolerance, whereas Arabidopsis
ZmRS-overexpressing plants show increased tolerance
to drought stress (Li et al., 2020). This enhanced
drought tolerance conferred by overexpression of ZmRS
was found to be due to increased myo-inositol levels
following galactinol hydrolysis, with the increased ratio
of myo-inositol to raffinose positively regulating plant
drought stress responses.

Thellungiella salsuginea, which is an important
model for studying abiotic stress responses, shows
increased levels of galactinol and raffinose and a high
ratio of raffinose to sucrose when subjected to salt,
drought, or cold stress (Amtmann, 2009). TsGolS2 is
significantly induced by NaCl, polyethylene glycol,
and abscisic acid (ABA) treatments. Overexpression of
TsGolS2 in Arabidopsis improves salt and osmotic
stress tolerance as manifested by the higher rates of
germination and seedling growth of TsGolS2 overex-
pressors compared with those of the control plants
(Sun et al., 2013). As mentioned above, ZmHSFA2
can regulate the expression of AtGolS1, AtGolS2, and
AtRS5 in Arabidopsis plants. Analogously, Arabidopsis
plants overexpressing AtHsfA2 also exhibit increased
transcription of AtGolS1, AtGolS2, AtGolS4, and
AtRS2 and increased galactinol and raffinose contents
compared with control plants. Exogenous methylviolo-
gen treatment, which can mimic the oxidative stress
in Arabidopsis, significantly increases the expression
of not only AtHsfA2 but also the AtGolS and AtRS
genes and the levels of galactinol and raffinose.
Overexpression of AtGolS1 and AtGolS2 results in
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increased levels of galactinol and raffinose, which are
positively correlated with enhanced tolerance to oxida-
tive, salinity, and chilling stresses in Arabidopsis
(Nishizawa et al., 2008). These results together indi-
cate the positive roles of RFOs in regulating plant
responses to drought, salt, and oxidative stresses.

So far, three regulatory mechanisms have been pro-
posed to explain the roles of RFOs in mediating dif-
ferent abiotic stress responses in plants. First, raffinose
could maintain the stability of the cell membrane dur-
ing air-drying and prevent leakage of cellular contents
and membrane fusion after rehydration (Cacela and
Hincha, 2006). Second, galactinol and raffinose could
function as osmoprotectants and ROS scavengers to
mitigate oxidative damage generated by adverse condi-
tions (Nishizawa et al., 2008; Van den Ende and
Valluru, 2009; Van den Ende, 2013). Third, raffinose
could be transported into chloroplasts to protect thy-
lakoids and stabilize photosystem II, maintaining plant
photosynthesis under adverse conditions (Knaupp
et al., 2011).

D. The role of RFOs in biotic stress response

Induced systemic resistance (ISR) and systemic
acquired resistance are two types of resistance against
pathogenic attacks induced in plants upon appropriate
stimulation before contact with pathogens (Kim et al.,
2008). Two previous studies have indicated the
important roles of RFOs in regulating Pseudomonas
chlororaphis O6-mediated ISR in plants (Kim et al.,
2008). Transcriptional induction of C. sativus GolS1
(CsGolS1) and the resultant accumulation of galactinol
are observed earlier in O6-treated cucumber plants
than in control plants after Corynespora cassiicola
challenge. CsGolS1-overexpressing transgenic tobacco
plants, which show increased accumulation of galacti-
nol, exhibit constitutive resistance against the patho-
gens Botrytis cinerea and Erwinia carotovora (Kim
et al., 2008). Exogenous galactinol treatment remark-
ably increases the resistance of wild-type tobacco
plants against pathogen infection, at least partially
through the activation of defense-related genes, such
as pathogenesis-related protein 1a (PR1a) and PR1b.

In Arabidopsis, AtGolS1, the ortholog of cucumber
CsGolS1, is specifically induced by the pathogen B.
cinerea (Cho et al., 2010). Simultaneous overexpres-
sion of melon CmGolS1, cucumber CsRS, and Alonsoa
meridionalis AmSTS in Arabidopsis resulted in a
strong accumulation of RFOs in the transgenic plants,
which showed enhanced resistance to the green peach
aphid. Contrary to the positive roles of GolS inTa
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regulating disease and pest resistance, GolS genes in
poplar seem to play negative roles in resistance; the
expression levels of two endogenous GolS genes are
significantly downregulated and the galactinol level is
reduced in wild-type poplar leaves inoculated with
leaf rust (Melampsora aecidiodes) (La Mantia et al.,
2018). In addition, poplar plants overexpressing
AtGolS3 and CsRS exhibit increased galactinol and raf-
finose contents and decreased leaf rust resistance,
while GolS-silenced poplar plants, which have lower
galactinol concentrations, show significantly higher
leaf rust resistance than the AtGolS3-overexpressing
plants. The decreased leaf rust resistance of AtGolS3
and CsRS overexpressing plants may be at least in
part due to the reduced expression of salicylic acid
(SA) signaling genes as well as the reduced level of SA
in these transgenics (La Mantia et al., 2018).
Intriguingly, antagonism between SA and myo-inosi-
tol, an essential substance for the synthesis of galacti-
nol, was identified in Arabidopsis plants infected with
Pseudomonas syringae (Chaouch and Noctor, 2010).
Myo-inositol suppresses the accumulation of SA and
abolishes the resistance to virulent bacteria in cata-
lase-deficient plants. Taken together, these results sug-
gest that RFOs play pivotal roles in plant biotic stress
response and that their specific roles depend on the
pathogen the plant encounters.

VII. Concluding remarks and future
perspectives

Compelling evidence is accumulating that induction
of the expression of RFO biosynthetic genes (espe-
cially GolS and RS) and the accumulation of RFOs
(mainly galactinol and raffinose) are general responses
of plants to various abiotic and biotic stresses and
that high levels of RFOs lead to enhanced tolerance of
plants to different stresses. More strikingly, the roles
of RFOs in seed vigor, plant growth, and development
have also been reported by recent studies, supporting
the existential importance of RFOs in the
plant kingdom.

Although great progress has been made, our know-
ledge of the specific roles of RFOs in plant develop-
ment and the responses of RFOs to different plant
stresses are still very limited. Systematic studies on the
origin and evolution of RFO metabolic pathways will
help us to understand the relationship between RFO
functions and adaptive evolution in plants. In add-
ition, comparative analysis of anatomical structure in
more species, together with spatially resolved metabo-
lomics studies will help reveal the mechanism of

source-to-sink transport of RFOs in plants. Moreover,
systemic studies on the molecular mechanisms by
which RFOs modulate plant development, stress toler-
ance, and seed vigor are still largely lacking. With the
application of cutting-edge technologies, we can
expect that more specific roles of RFO metabolic
genes will be validated and their regulatory mecha-
nisms fully understood in the next few years.
Crucially, the development of genome editing technol-
ogy means that in the near future key RFO metabol-
ism enzymes could serve as promising targets for
improving crop yield or quality by achieving the right
balance of RFOs. This is especially important for
legumes, where reduction of the RFO content in seeds
could make them more suitable for consumption by
humans and monogastric animals.
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