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Dear editor, 13 

A central question of plant biology is to specify the temporal and spatial patterns as well as the quantitative 14 

level of gene expressions, which are significantly associated with important agronomic traits. There is a 15 

growing consensus in the past decade that two key factors determining gene expression level are cis-16 

regulatory modules (CRMs) and trans-acting factors (TAFs) (Schmitz et al., 2022). Common CRMs 17 

include gene-proximal promoters and distal enhancers, which are all considered as the complex assemblies 18 

of cis-regulatory elements (CREs). It is the binding or interaction between CREs and TAFs (often are 19 

transcription factors, TFs) in a ubiquitous or cell-specific manner that determines in which cell, at what 20 

time and at what level a gene is expressed. Therefore, the identification of plant CRMs or critical CREs 21 

will not only help us understand transcriptional regulatory mechanisms in plants, but also is an essential 22 

prerequisite for plant breeding 4.0─breeding by genome editing (Gao, 2021).  23 

However, comparing with rich data resources on CREs in mammalian genomes (Fornes et al., 2020), 24 

related works in plants have lagged far behind (Schmitz et al., 2022). The bottleneck mainly lies in two 25 

aspects: (1) the lack of a big project like ENCODE in plants makes epigenomic features absent or 26 

fragmented, leading only a handful of putative plant CREs from genome-wide identification; (2) too few 27 

transient transfection systems (only two of protoplasts and tobacco leaves (Jores et al., 2021)), together 28 

with difficult validation assays like self-transcribing active regulatory region-sequencing (STARR-seq) in 29 

plants, make fewer experimental-validated CREs.  30 

Plant Core Promoter (PCP), with the minimal sequence region of 50-100bp around transcription start 31 

site (TSS), is a large group of CRMs that are rich in CREs, and can drive basal level of target gene 32 

transcriptions (Schmitz et al., 2022). The promoter strength of PCP is defined as the ability to drive 33 

expression of a barcoded green fluorescent protein (GFP) reporter gene via transient transfection systems. 34 

To our best knowledge, there is no existing computational tool for identifying CREs within PCPs. Here, 35 

we developed a deep learning-based web server (http://www.hzau-hulab.com/icrepcp/) to identify which 36 

CREs a given Plant Core Promoter (iCREPCP) contains, with a focus on base-resolution position of 37 

each CRE and its contribution to the promoter strength.  38 

We first downloaded a large-scale PCP dataset of 18,329 Arabidopsis, 34,415 maize and 27,094 39 

sorghum core promoters, whose strengths were measured by STARR-seq assays in six transient 40 

transfection systems (tobacco leaves with enhancer in dark,  tobacco leaves without enhancer in dark, 41 

tobacco leaves with enhancer in light, tobacco leaves without enhancer in light, maize protoplasts with 42 

enhancer in dark and maize protoplasts without enhancer in dark) (Jores et al., 2021). We will take 43 
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‘sequence’ as input and ‘enrichment’ as output of a total of about 76,000 samples from all three species 44 

for training and testing deep learning models.  45 

We next trained a deep learning architecture of ‘DenseNet’ (Huang, 2017) to fit promoter strengths with 46 

their DNA sequences. DenseNet has won the best paper award of CVPR-2017, and it can alleviate the 47 

vanishing-gradient problem (Figure 1A, Supplementary Information). As expected, iCREPCP can 48 

accurately fit the experimental results in all six transfection systems: the mean training R2 ranges from 49 

0.490 to 0.782, and all models have low variances, implying their feasibilities (Figure 1B). We next 50 

investigate its generalizability by an independent testing dataset (Supplementary Information). 51 

Remarkably, iCREPCP achieves good testing R2 ranging from  0.420 to 0.752 and obviously improves 52 

the previous work who employed a simple convolutional neural network (Jores et al., 2021) (Figure 1B), 53 

also implying its strong generalizability. Moreover, the small differences between training R2 and testing 54 

R2 (ranging from 0.03 to 0.07) demonstrate that iCREPCP have little problems of overfitting, further 55 

suggesting that they have potential transfer abilities for other plant species. 56 

To investigate the biological interpretability and practicability of iCREPCP, we here are more 57 

concerned on the contribution of each base during the promoter strength prediction of PCP rather than the 58 

prediction accuracy. Because several successive bases having high contributions are potential critical 59 

CREs, which are ideal targets of genome editing engineering (Gao, 2021). To this end, we employed a 60 

powerful interpretability tool of DeepLIFT (Shrikumar, 2017) to assign a DeepLIFT contribution score to 61 

each base of a given PCP. We employed two known PCP examples of maize YIGE1 gene and rice IPA1 62 

gene for demonstrating the detecting power of iCREPCP together with DeepLIFT (DeepLIFT 63 

contribution scores are visualized as high characters with colors that help readers easily find critical bases). 64 

YIGE1 is a newly-reported maize gene contributing to ear length and grain yield, and a single-nucleotide 65 

polymorphism (SNP) located in its regulatory region had a large effect on its promoter strength (Luo et 66 

al., 2022). Using the trained model of tobacco leaves without enhancer in light, iCREPCP successfully 67 

located a large-contributed regulatory region flanking the important SNP (also repeatedly detected by two 68 

additional interpretability tools of in-silico tilling deletion and in-silico mutagenesis, Figure 1C), 69 

suggesting its detecting power. For trans-species circumstance, IPA1 is a rice star gene that is a master 70 

regulator of rice plant architecture. Its’ function was known to increase grains per panicle but reduce tillers, 71 

but a recent breakthrough reported that a 54-base pair cis-regulatory deletion can both increase grains per 72 

panicle and tiller number (Song et al., 2022). Surprisingly, iCREPCP successfully detected a 12bp region 73 

(-128~-117) with large contributions that exactly covers the An-1 binding site within the deletion (Figure 74 
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1D, Supplementary Figure 1), implying that iCREPCP has great potentials for trans-species 75 

identifications of base-resolution critical CREs.  76 

For a rough estimation of precision and recall of iCREPCP, we constructed a benchmark of Arabidopsis 77 

CREs, which was employed for an evaluation:  precision and recall are 0.447 and 0.344 respectively 78 

(Supplementary Figure 3 and Supplementary materials).  79 

To investigate biological implications of several successive bases with high DeepLIFT contribution 80 

scores, we next naturally ask whether they are TF motifs and then employed a new motif discovery 81 

algorithm of TF-MoDISco (Shrikumar, 2018), that was specifically developed for deep learning, to 82 

identify high-quality, non-redundant TF motifs within PCPs (Supplementary Information). For the trained 83 

model of tobacco leaves without enhancer in light, TF-MoDISco totally identified 21 clustered seqlets, 14 84 

out of which have perfect matching in JASPAR database (Figure 1E, Supplementary Figure 2 and Table 85 

1). To further quantify the population-level effect size of the 14 enriched TF motifs, we performed a global 86 

importance analysis (Koo et al., 2021) and found that 8 (including TATATA motif, TCP8 and AP1) out 87 

of 14 have positive global importance, whereas 6 (including ERF3 and ABI3) out of 14 have negative 88 

effects (Figure 1F). Finally, we scanned all 75,375 PCPs using the 14 PWMs of the enriched TF motifs 89 

and gave a comprehensive statistic about their occurrence numbers in each PCP sample (Figure 1G, 90 

Supplementary Table 2). Notably, the TATATA motif has the most occurrence numbers within PCPs 91 

having large promoter strengths in all three species, whereas the ERF3 motif has more occurrences within 92 

PCPs having small promoter strengths in both sorghum and maize, which is consistent with their global 93 

importance analysis results. 94 

In summary, iCREPCP (Figure 1H) provides a user-friendly platform to identify critical CREs that 95 

importantly contribute to the promoter strength of any given PCPs with base resolution. These resources, 96 

including the six trained prediction models and a powerful visualization tool, will greatly help plant 97 

scientists in at least two respects: (i) easily obtain an accurate prediction value of the promoter strength 98 

with the only need of the 170bp DNA sequence around its TSS; (ii) precisely detect the base-resolution 99 

position of each CRE and its contribution to the promoter strength. The later function will provide 100 

important candidate targets of genome editing and will be of general interests in the plant community. The 101 

main limitation of iCREPCP is that it was trained with promoter strength measured in vitro via tobacco 102 

leaves or maize protoplasts, implying that iCREPCP might work not well on some genes needing distinct 103 

expression pattern in vivo. Another limitation is that the prediction accuracy is sensitive to the boundary 104 

(Supplementary Figure 4), imply that our models only can be used on (-165, +5) of TSS. Further 105 
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improvements of iCREPCP will focus on the accurate identification of distal CREs: (i) take longer 106 

genomic sequences as the inputs, covering more distal CREs (such as enhancers) influencing gene 107 

expressions; (ii) develop more sophisticated models for capturing long-range dependency information.  108 

Data availability 109 

The datasets and codes used to build the DenseNet model, to compute the DeepLIFT contribution scores 110 

and to perform TF-MoDISco analysis are available at https://github.com/kaixuanDeng95/iCREPCP. 111 
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 148 

Figure 1. The workflow of iCREPCP. 149 

(A) The deep learning architecture of DenseNet.  150 

(B) The prediction performances via R2 on training sets and on independent testing sets for six transient systems. 151 

(C) The example of maize YIGE1 gene for demonstrating the detecting power of iCREPCP. Top panel, a snapshot of core 152 

promoter region: chr1_51127917-51128086; The second panel is the FIMO scanning results; The third panel is the DeepLIFT 153 

contribution score; The fourth and fifth panels are used to demonstrate the results of in-silico tilling deletion, which measure 154 

the difference of predicted promoter strength with a sliding window of 5-bp deletion across the whole sequence; The bottom 155 

panel is the heatmap for demonstrating in-silico mutagenesis results.  156 

(D) A trans-species example of rice IPA1 gene with the same layout of (C).  157 

(E) A total of 14 seqlets identified by TF-MoDISco of the model of tobacco leaves without enhancer in light and their similar TF 158 

motifs in JASPAR.  159 

(F) Motif occurrence frequencies and global importances of 14 enriched TF motifs of the model of tobacco leaves without enhancer 160 

in light.  161 

(G) The heatmap for demonstrating occurrence numbers of 14 enriched TF motifs within all 75,375 PCPs. Each row 162 

represents a PCP and each column represents a specific TF motif. The row order (from top to bottom) is based on promoter 163 

strength (from high to low) within each species and the column order (from left to right) is based on the total occurrence 164 

number of TF motifs across three species (from more to less).  165 

(H) The homepage of iCREPCP. 166 
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