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Summary

� Ear length (EL), which is controlled by quantitative trait loci (QTLs), is an important compo-

nent of grain yield and as such is a key target trait in maize breeding. However, very few EL

QTLs have been cloned, and their molecular mechanisms are largely unknown.
� Here, using a genome wide association study (GWAS), we identified a QTL, YIGE1, which

encodes an unknown protein that regulates EL by affecting pistillate floret number. Over-

expression of YIGE1 increased female inflorescence meristem (IM) size, increased EL and

kernel number per row (KNPR), and thus enhanced grain yield. By contrast, CRISPR/Cas9

knockout andMutator insertion mutant lines of YIGE1 displayed decreased IM size and EL.
� A single-nucleotide polymorphism (SNP) located in the regulatory region of YIGE1 had a

large effect on its promoter strength, which positively affected EL by increasing gene expres-

sion. Further analysis shows that YIGE1 may be involved in sugar and auxin signal pathways

to regulate maize ear development, thus affecting IM activity and floret production in maize

inflorescence morphogenesis.
� These findings provide new insights into ear development and will ultimately facilitate

maize molecular breeding.

Introduction

Maize provides 42% of the world-wide food calories consumed
by humans, and in doing so it has exceeded the consumption of
rice to become the world’s most important cereal crop (Hawkins
et al., 2013). By 2050, a 50% increase in cereal grain production
will be required to meet the needs of the estimated human popu-
lation of c. 9.7 billion (Ray et al., 2013; Gerland et al., 2014; Yu
& Li, 2021). Thus, higher yield remains a major goal in maize
crop breeding. Ear length (EL) is an important component of
yield, with an increased EL leading to a higher grain yield (Huo
et al., 2016; Jia et al., 2020). However, identification of the
genetic components underlying EL has proven challenging. To
date, hundreds of quantitative trait loci (QTLs) for EL have been
identified (Xiao et al., 2016; Li et al., 2018), but few have been
cloned (Jia et al., 2020; Ning et al., 2021).

Traditional QTL identification in plants depends on synthetic
population-based linkage analysis or natural population-based
linkage disequilibrium (LD) analysis. Linkage analysis is resource-
and time-consuming, given that large population size, high-
resolution linkage maps and reliable phenotypes are required to
ensure the accuracy of detection. Moreover, in a QTL mapping
population, the limited number of recombination events leads to

large confidence intervals comprising many genes, which render it
difficult to identify the causal gene(s) underlying a QTL (Price,
2006; Liang et al., 2021). Conversely, genome wide association
studies (GWAS) can resolve QTLs to the genic level by taking
advantage of historical recombination. Its widespread adoption
has led to a rapid explosion in the identification of trait-associated
variations or putative candidate genes for complex traits, especially
in maize, which is characterized by rapid LD decay (Flint-Garcia
et al., 2003; Yan et al., 2011). Indeed, the use of GWAS has facili-
tated the genetic dissection of many different traits in maize, from
simple, relatively quantitative traits, including flowering time
(Hung et al., 2012; Yang et al., 2013) and nutritional content (Yan
et al., 2010; Li et al., 2013), to complex quantitative traits, includ-
ing drought tolerance (Mao et al., 2015; Wang et al., 2016), kernel
size and weight (Liu et al., 2017) and grain moisture (Li et al.,
2021). However, GWAS have a lower power of detection for
low-frequency variants and QTLs with minor effects and often
generates false positives due to inherent population structure
(Flint-Garcia et al., 2005; Zhang et al., 2010; Xiao et al., 2016).
Surprisingly, although association studies of maize EL have been
attempted (Xiao et al., 2016; Zhu et al., 2018), few causal genes
have been identified.

Auxin regulates inflorescence development by affecting initi-
ation and formation of axillary meristems (Zhao, 2010; Zhang
& Yuan, 2014). A PINOID-related kinase gene, BIF2*These authors contributed equally to this work.
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(McSteen & Hake, 2001; McSteen et al., 2007), and two
AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA)-related genes,
BIF4 and BIF1 (Galli et al., 2015), regulate inflorescence axil-
lary meristem initiation and determinacy. A PIN-FORMED-
related gene, ZmPIN1, functions as an auxin efflux transporter
(Gallavotti et al., 2008b), which was shown to be directly regu-
lated by BIF2 to affect maize branching during maize inflores-
cence development (Skirpan et al., 2009). Two auxin
biosynthesis genes, SPI1 (Gallavotti et al., 2008a) and VT2
(Phillips et al., 2011), are required for inflorescence develop-
ment. Moreover, KRN6 positively regulates EL and functions
in auxin-dependent inflorescence development by mediating
Arf GTPase-activating protein (AGAP) phosphorylation (Jia
et al., 2020). Thus, auxin plays a critical role in the regulation
of axillary meristem initiation and EL in maize. Similarly, it
has been demonstrated that sugar could act as a signal in a
specific pathway to regulate plant growth. The maize ra3 gene,
which operates upstream of ra1, appears to regulate inflores-
cence development by modulating sugar signaling (Satoh-
Nagasawa et al., 2006). Although the fact that this mutation
can be complemented by an inactive version of ra3 suggests
that the mechanism underlying this phenotypic change may be
unrelated to the enzymatic activity, Claeys et al. (2019) suggest
that we do not fully understand the mechanisms underlying
this phenomenon. That said, recent evidence suggests that
sugar could affect kernel (LeClere et al., 2010), root (Yuan
et al., 2020), and bud (Bertheloot et al., 2020) growth via the
regulation of auxin signaling in plants. However, as yet, little is
known about the interaction between sugar signaling and auxin
signaling in maize inflorescence morphogenesis.

In this study we mapped qEL1, a major QTL for EL on chro-
mosome 1, using a GWAS and cloned the underlying functional
gene (GRMZM2G008490 in B73 Ref_V2), which we named
YIGE1. It is found that YIGE1 positively affects EL via the eleva-
tion of auxin concentrations, IM activity and floret production.
The inbred lines which contain the favorable allele of qEL1 showed
greater promoter activity, higher expression of YIGE1, and elevated
EL. Our analyses revealed that YIGE1 underwent continuous selec-
tion during maize selection, and that the favorable haplotype is
considerably enriched in modern maize. These findings thus
provide beneficial information for future maize improvement.

Materials and Methods

Candidate gene identification by genome wide association
study analysis

A total of 540 diverse inbred lines from the association mapping
panel were genotyped with 1.25 million single-nucleotide poly-
morphism (SNP) markers (Yang et al., 2011; Liu et al., 2017b).
Ear length for this population was evaluated in five environ-
ments, which have been described previously (Yang et al.,
2014). The GWAS was performed using TASSEL v.3.0 (Bradbury
et al., 2007) with a mixed linear model (MLM) considering
varietal relatedness (K) and population structure (Q) (MLM+
K +Q) (Yu et al., 2006; Zhang et al., 2010). The LD among

associated SNPs was calculated using HAPLOVIEW v.4.1 (Barrett
et al., 2005).

Transgenic verification

To knock out four candidate genes, we designed two guide RNAs
targeting the exon for each gene with CRISPR-P (Liu et al.,
2017a) (http://crispr.hzau.edu.cn/CRISPR2/) and cloned them
into pCPBZmUbi-hspCas9 (Li et al., 2017). For overexpression
of YIGE1, the full-length coding sequence (CDS) of YIGE1
infused with yellow fluorescent protein (YFP) was driven by the
ubiquitin promoter. Both the overexpression and CRISPR-Cas9
vectors were transformed into KN5585 (Liu et al., 2020) with
Agrobacterium tumefaciens EHA105 (Weimi Biotechnology Co.
Ltd, Changzhou, China), and the positive lines and editing
events were confirmed through polymerase chain reaction (PCR)
analysis. The primers used are listed in Supporting Information
Table S1. The transgenic lines were planted in experimental fields
in Hainan (Sanya; 18.3°N, 109.5°E) and Hubei (Wuhan;
30.58°N, 114.31°E), China. Plants were grown in 2.5 m rows,
spaced 0.5 m apart, with 11 individuals in each row.

YIGE1mutant screening

The maize mum1 mutant of YIGE1 (mu1032507), a Mutator-
mediated mutant, was obtained from the Maize Stock Center
(https://maizecoop.cropsci.uiuc.edu/). The Mu insertion was
confirmed by PCR with YIGE1-specific and TIR6 primers
(Table S1). Heterozygous individuals were backcrossed to wild-
type (WT) individuals twice and segregated through self-
pollination. Approximately 80 individuals were evaluated for
both the homozygous mum mutants and the WT siblings in
experimental fields in Hebei (Baoding; 39.1°N, 115.3°E) and
Hubei (Ezhou; 30.1°N, 114.4°E).

Phenotype measurement

We collected maize ears before and after pollination from WT,
mum1 mutant, YIGE1 overexpression (OE) and nontransgenic
(NT) lines, counted the number of florets per row, and measured
ear length with ruler. We obtained a picture of the inflorescence
meristem (IM) on each developing ear (3–4 mm) using a stere-
omicroscope (Olympus; SZX10) and measured the size of the
IM using IMAGEJ (Schindelin et al., 2015).

Luciferase activity assay

To test the effect of variations in the YIGE1 promoter on gene
expression, a dual-luciferase transient expression assay was per-
formed in maize protoplasts (Huang et al., 2018). In this system,
the reporter construct contains two luciferase cassettes, one being
the Renilla luciferase (REN) reporter gene driven by the 35S pro-
moter, which is used as an internal control, and the other being fire-
fly luciferase (LUC) driven by the target gene promoter. Promoter
sequences of YIGE1 (c. 1.5 kb in length) were amplified from maize
inbred lines YU87-1 and BK. The primers for amplifying the
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YIGE1 promoter sequences are listed in Table S1. Point mutation
promoter sequences were synthesized by Tsingke Biological Tech-
nology Co. Ltd (Wuhan, China). These four promoter sequences
were then cloned into the pGreen II 0800-LUC vector, upstream
of mpCaMV, to generate the reporter constructs. Mesophyll proto-
plasts were isolated from the leaves of 10-d-old etiolated B73
seedlings. Subsequently, the prepared plasmids were transformed
into the prepared mesophyll protoplasts using polyethylene glycol-
mediated transformation (Yoo et al., 2007). Both firefly LUC and
REN activity was measured using the Dual-Luciferase Reporter
Assay System (Promega) according to the manufacturer’s instruc-
tions. The LUC activity of each construct was measured with three
technical replicates for each of three biological replicates. Relative
LUC activity was calculated by normalizing the firefly LUC activity
to the Renilla LUC activity.

In situ hybridization

Developing ears (2–5 mm) from B73 were fixed in formalin–
acetic acid–alcohol (FAA) solution for 16 h at 4°C, which was
then replaced with 70% ethanol twice and dehydrated with an
ethanol series, substituted with xylene, embedded in Paraplast
Plus (Sigma), and sectioned to a thickness of 8 lm. Two probes
of 860 and 895 bp RNA fragments were synthesized using SP6
and T7 RNA polymerase (Roche), respectively, with digoxigenin-
UTP as a label. RNA hybridization and immunological detection
of the hybridized probes were performed as described previously
(Lincoln et al., 1994; Jackson & Hake, 1999), with the addition
of 8% polyvinyl alcohol to the detection buffer to minimize dif-
fusion of the reaction products. Slides were exposed for 12–15 h
before mounting and imaging, followed by visualization under a
microscope (Eclipse 80i; Nikon, Tokyo, Japan). The primers
used for the RNA probes are listed in Table S1.

Quantitative real-time polymerase chain reaction
(qRT-PCR) and RNA-seq

For qRT-PCR analysis, c. 0.1 g of plant tissue was used to extract
total RNA using Quick RNA Isolation Kit (Huayueyang
Biotechnology Co. Ltd, Beijing, China). Sources of the analyzed
tissue included immature ears (2–5 mm) from YIGE1-OE, mum1
and 82 inbred lines, and stem, bract, immature roots, leaves,
immature leaves, developing tassels, and developing ears (2, 2–5
and 5–8 mm) from WT and mum1. EasyScript One-Step gDNA
Removal and cDNA Synthesis SuperMix (TransGen Biotech Co.
Ltd, Beijing, China) was used to remove the gDNA from the
extracted RNA and synthesize first-strand complementary DNA.
Real-time fluorescence quantitative polymerase chain reaction
with SYBR Green Master Mix (Vazyme Biotech Co. Ltd,
Nanjing, China) on a CFX96 Real-Time System (Hercules, CA,
USA) was used to quantify the expression level of YIGE1. Each
set of experiments was repeated three times, and the relative quan-
tification method (2�DDCT) (Rao et al., 2013) was used to evaluate
relative expression, with maize ACTIN (Zm00001d010159) used
as the internal control. The primers used for quantitative PCR are
listed in Table S1.

For RNA-seq analysis, the RNA extracted from developing
ears (0.5–1 mm) of YIGE1-OE and nontransgenic lines, with
three biological replicates for each genotype, were used for RNA-
Seq (Annoroad Gene Technology, Beijing, China). Total RNA
was isolated using the Quick RNA Isolation Kit (Huayueyang
Biotechnology Co. Ltd). A library with insert sizes ranging from
200 to 500 bp was prepared using commercial library preparation
kits (TruSeq Stranded mRNA LT-SetA, RS-122-1201; Illumina,
San Diego, CA, USA) and was sequenced following the HiSeq
X-Ten protocols. Low sequencing quality reads and adapter
sequences were removed using the software TRIMMOMATIC v.0.36
(Bolger et al., 2014). The paired-end reads were mapped onto the
B73 AGPv.3.25 reference genome using the software TOPHAT2
(Kim et al., 2013); only the uniquely mapped reads were used to
quantify gene expression levels using CUFFLINKS (Ghosh & Chan,
2016). The expression data for each gene was normalized using
the software DESEQ2 (Varet et al., 2016) before the subsequent
analysis. Differential gene expression was determined using
EDGER. Enrichment analysis of gene ontology (GO) was per-
formed using the AGRIGO v.2.0 software (Tian et al., 2017)
(http://systemsbiology.cau.edu.cn/agriGOv2/). Gene ontology
terms with P < 0.01 were identified as enriched processes. The
expression of selected genes that are critical in maize development
was quantified by qRT-PCR to verify the RNA-seq data.

Detection of sugar and phytohormones

Fresh developing ears (2–5 mm) from YIGE1 OE and NT lines
were harvested, immediately frozen in liquid nitrogen and stored
at �80°C. Sugar and phytohormone content was detected using
METWARE (http://www.metware.cn/).

For the detection of sugar, the freeze-dried developing ears
were crushed using a mixer mill (MM 400; Retsch, Haan, Ger-
many) with a zirconia bead for 1.5 min at 30 Hz. Twenty mil-
ligrams of powder was dissolved in 500 ll of methanol:
isopropanol: water (3 : 3 : 2, v/v/v), vortexed for 3 min and ultra-
sonicated for 30 min. The extract was centrifuged at 18 400 g at
4°C for 3 min. Next, 50 ll of the supernatant was mixed with
20 ll internal standard (ribitol, 100 lg ml�1) and evaporated
under a nitrogen gas stream. The evaporated sample was trans-
ferred to the lyophilizer for freeze-drying, and the residue was
used for further derivatization. The residue was mixed with
100 ll solution of methoxyamine hydrochloride in pyridine
(15 mg ml�1), and the mixture was incubated at 37°C for 2 h.
Next, 100 ll of N,O-Bistrifluoroacetamide (BSTFA) was added
into the mixture and kept at 37°C for 30 min after vortex-
mixing. The mixture was analyzed by gas chromatography mass
spectrometry (GC-MS) after diluting to an appropriate concen-
tration. A 7890B gas chromatograph (Agilent, Palo Alto, CA,
USA) coupled to a 7000D mass spectrometer (Agilent) with a
DB-5MS column (30 m length9 0.25 mm internal diame-
ter9 0.25 lm film thickness; J&W Scientific, Milwaukee, WI,
USA) was used for the GC-MS analysis (G�omez-Gonz�alez et al.,
2010; Dauphin et al., 2020).

For the detection of phytohormones, 50 mg of plant sample
material was weighed, placed into a 2 ml plastic microtube,
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frozen in liquid nitrogen, and dissolved in 1 ml methanol : water :
formic acid (15 : 4 : 1, v/v/v). For quantification, 10 ll internal
standard mixed solution (100 ng ml�1) was added to the extract.
The mixture was vortexed for 10 min, followed by centrifugation
for 5 min (18400 g at 4°C). The supernatant was then transferred
to a clean plastic microtube, evaporated to dryness, re-dissolved
in 100 ll 80% methanol (v/v), and filtered through a 0.22 lm
membrane filter for further liquid chromatography–tandem mass
spectrometry (LC-MS/MS) analysis. An ultra-performance liquid
chromatography-electrospray ionization tandem mass spectro-
metry (UPLC-ESI-MS/MS) system (the UPLC system was an
ExionLTM AD; Sciex (Washington, DC, USA); the MS system
was a 6500 Triple Quadrupole; Applied Biosystems; Redwood,
CA, USA) was employed for LC-MS/MS analysis (Flokov�a et al.,
2014; Li et al., 2016; �Simura et al., 2018).

Results

YIGE1 positively regulates maize ear length

In a widely used maize association mapping panel (Yang et al.,
2011, 2014; Xiao et al., 2017), we found that EL shows large
variations, ranging from 7.25 to 17.41 cm, with an average of
12.24 cm (Fig. S1). Using a new and high density SNP marker
set (1.25 million SNPs, minor allele frequency (MAF) ≥ 0.05;
Liu et al., 2017b), a QTL (qEL1) on chromosome 1 was found to
be significantly associated with EL (P < 9.879 10�7) by per-
forming a GWAS, controlling for both the population structure
and kinship (MLM, Q +K; Yu et al., 2006; Zhang et al., 2010;
Fig. 1a). Moreover, a QTL was also identified in the equivalent
region in a recombinant inbred line (RIL) population derived
from cross between YU87-1 (with shorter EL) and BK (with
longer EL; Xiao et al., 2016). Four annotated genes were identi-
fied in the candidate region (Fig. 1a). We measured the expres-
sion levels of these four genes in 2–5 mm developing ears in the
two parental lines of the RIL population. Of the four genes, two
showed no difference in expression levels, while genes
GRMZM2G329040 and GRMZM2G008490 showed nearly
two-fold higher expression in BK than in YU87-1 (Fig. 1a).

In order to confirm the identity of the gene governing EL vari-
ation, we used CRISPR/Cas9 technology to knock out these four
genes. Notably, only GRMZM2G008490 knockout (KO) lines
carrying a 432 bp deletion in their CDS, which results in a dele-
tion of 144 amino acids (Fig. S2a,b), displayed significantly
decreased EL (1.09 cm shorter compared with the negative con-
trol; P = 3.839 10�5, n = 59/69; Figs 1b,c; S2c). Knockout lines
of the other three genes were invariant in EL compared with their
respective controls (Fig. S3). In addition, we used mum1 lines,
which have aMutator insertion at 1347 bp upstream of ATG and
OE lines of GRMZM2G008490 driven by the ubiquitin pro-
moter to further validate the function of GRMZM2G008490.
Compared with wild-type (WT) plants, mum1 mutants displayed
both significantly reduced expression levels (Fig. 1d) and shorter
EL (Figs 1e,f; S4). By contrast, the OE lines had significantly
increased expression levels (Figs 1g; S5a) and longer EL (Figs 1h,
i; S5b) than that of nontransgenic (NT) siblings in four

independent transgenic events. Taken together, these data indi-
cate that GRMZM2G008490 (Zm00001d028915 in B73
Ref_V4), which we refer to as YIGE1 hereafter, is the causal gene
for qEL1 and positively regulates EL.

YIGE1 encodes an unknown protein with only one predicted
exon. Rapid amplification of cDNA ends (RACE)-polymerase
chain reaction (PCR) indicated that the full-length YIGE1 cDNA
consisted of a 183-bp 50 UTR, a 1704-bp open reading frame
(ORF; one exon) and a 159-bp 30 UTR (Fig. S6a,b). We
searched for proteins homologous to YIGE1 in the National
Center for Biotechnology Information database, and found that
the closest orthologs of YIGE1, in Sorghum bicolor, have not been
functionally characterized (Fig. S6b). However, a close homolog,
which is named HCF243 and shares 38.5% amino acid identity
with YIGE1, was identified in Arabidopsis. HCF243 has been
reported to encode a chloroplast-localized protein and to be
involved in D1 protein stability of the photosystem II complex,
with its mutant displaying high Chl fluorescence, resulting in
shorter inflorescence stems and pale rosette leaves (Zhang et al.,
2011). However, YIGE1 has a different subcellular localization
(in the cytoplasm; Fig. S6c). In addition, KO, OE, and mum1
lines of YIGE1 had normal growth without pale leaves (Fig. S7).
Therefore, YIGE1 may have different functions in different
plants (e.g. maize vs Arabidopsis).

A single SNP in the putative YIGE1 promoter region
contributes to the expression and ear length variation

To determine the functional polymorphism, we re-sequenced a
4 kb region covering the regulatory region and gene body of
YIGE1 in 448 diverse inbred lines which belong to the associa-
tion mapping population (Yang et al., 2011). In total, 102 SNPs
and 27 insertions/deletions (InDels) were identified. Candidate
gene association analysis with these markers revealed that four
SNPs in the promoter, eleven SNPs – including nine nonsynony-
mous and two synonymous variations – in the exon, and two
SNPs in the 30-UTR (Fig. S8) were significantly associated with
EL, among which the lead SNP Chr1.S_50679974 had the low-
est P-value (P = 4.39 10–4; Fig. 2a). All of the significant poly-
morphisms are located within one LD block (r2 > 0.50; Fig. 2a).
Conditional association analysis, which used Chr1.S_50679974
as a covariant, found no other significant SNPs (Fig. S9). This
implied that only one causal variant existed within this gene. In
addition, YIGE1 expression levels in 2–5 mm immature ears of
82 inbred lines were positively correlated with EL (Pearson’s
r = 0.53, P = 1.129 10–6; Figs 2b; S10). Considering that YIGE1
expression was significantly associated with EL, and the most sig-
nificant SNP, Chr1.S_50679974, was located in a promoter
region, we speculated that causal variation should come from this
regulatory region. Moreover, lines harboring C at
Chr1.S_50679974 showed higher expression levels of YIGE1 and
longer EL (Fig. 2c,d) than that of lines harboring T. These obser-
vations agree with the phenotypic changes observed in the OE
and mum1 lines, suggesting that Chr1.S_50679974 was the most
likely functional polymorphism for variation of YIGE1 expres-
sion and EL across a wide range of maize germplasm.
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To explore the effect of Chr1.S_50679974 on expression of
YIGE1 and EL, we next measured the activity of LUC driven by
promoters harboring different alleles of Chr1.S_50679974 in the
maize protoplast. As expected, LUC driven by the YIGE1 pro-
moter from YIGE1BK (C allele) had much higher LUC activity
than that from YIGE1YU87-1 (T allele; Fig. 2e), indicating that
the C allele contributed to the higher expression of YIGE1BK.
Next, point mutation of the YIGE1 promoter by substitution of
the T allele of YIGE1YU87-1 with the C allele significantly ele-
vated the promoter activity (Fig. 2e). Conversely, substitution of
the C allele of YIGE1BK with the T allele resulted in reduced pro-
moter activity (Fig. 2e). Moreover, three F2 : 3 segregation popu-
lations were generated by the crossing of longer (ZHENG58 and
Mo17, C allele) and shorter (647 and TY1, T allele) EL inbred
lines. Intriguingly, the lines harboring the homozygous C allele
exhibit significantly longer EL than that displayed by lines con-
taining the homozygous T allele in three independent popula-
tions derived from 6479 ZHENG58, 6479Mo17 and
TY19Mo17 (Figs 2f; S11). Indeed, YIGE1 showed a typical
additive effect, with heterozygous lines displaying mid-parent
EL. To recapitulate, Chr1.S_50679974 appears to be the causal
variation that affects promoter activity, expression of YIGE1 and
finally EL. Chr1.S_50679974 is not located in a known motif or
domain, indicating that it may be an unknown regulation site.

The expression of YIGE1 positively correlates with
inflorescence meristem size and ear length

Ear IMs develop into the spikelet pair meristems (SPMs) which
then give rise to florets. More florets and higher floret fertility
lead to a higher KNPR (Jia et al., 2020). Compared to WT
plants, mum1 mutants displayed significantly reduced IM size
(P = 8.59 10�12), lower KNPR (P = 5.29 10�7) and shorter EL
(P = 7.69 10�3) before pollination (Fig. 3a–c). By contrast, the
OE lines displayed larger IM size (P = 2.59 10�8), higher
KNPR (P = 2.89 10�4) and longer EL (P = 4.69 10�4) before
pollination than their NT siblings (Fig. 3d–f). Following pollina-
tion, c. 59.3% of florets in NT siblings developed into kernels,
which is very similar to the proportion observed in OE lines
(c. 61.8%; Fig. 3d; Table S2). These findings indicate that the
transgenic process did not affect floret fertility, and that more flo-
rets in OE lines resulted in more KNPR and longer ears, with
KNPR having increased by 16.1% and EL by 10.3% (Table S2).

We next conducted a spatial and temporal expression pattern
analysis of YIGE1 in WT and the mum1 mutant. The YIGE1
transcripts were detected in stem, bract, immature and mature
leaf, immature root, developing ears (2, 2–5, 5–8 mm), IM, SPM
and spikelet meristem (SM). The highest level was observed in
the IM. Significant expression differences between the WT and
the mum1 mutant were detected in developing ears, IM, SPM
and SM (Fig. 3g), further confirming that differential expression
of YIGE1 in early developing ears and meristems is responsible
for EL variation. In addition, in situ hybridization showed that
YIGE1 was expressed in IM, SPM and SM (Fig. 3h). Taken
together, these results suggest that higher expression of YIGE1 in
the IM results in a larger IM, higher FNPR and longer EL.

YIGE1 is predicted to be involved in sugar and auxin
signaling pathways

Considering that YIGE1 was highly expressed in early developing
ears, we conducted RNA-seq using 0.5–1 mm developing ears
from OE and NT lines in order to identify the regulatory net-
works in which YIGE1 is involved. In total, we detected 506 dif-
ferentially expressed genes (DEGs, fold change > 2, P ≤ 0.01),
256 of which were up-regulated, and 250 of which were down-
regulated (Fig. 4a). Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis displayed some significantly enriched KEGG
pathways (P < 0.05), including metabolic pathways, circadian
rhythm–plant, starch and sucrose metabolism (Fig. 4b). More-
over, gene ontology (GO) analysis revealed several significantly
enriched GO terms (false discovery rate (FDR) < 0.05), includ-
ing response to hormone, response to abiotic stimulus and post-
embryonic development (Fig. 4b). Considering KEGG enrich-
ment on metabolic pathways, and GO enrichment on response
to hormone, we therefore subsequently measured the sugar and
phytohormones in 2–5 mm developing ears between YIGE1 NT
and OE siblings via GC-MS and LC-MS/MS, respectively.
Developing ears from YIGE1 OE lines accumulated more
Indole-3-acetic acid (IAA) than NT plants, and concentrations of
several IAA conjugates, including Indole-3-acetyl-L-aspartic acid
(IAA-Asp), Indole-3-acetyl glutamic acid (IAA-Glu), and Indole-
3-acetyl glycine (IAA-Gly) were similarly increased (Fig. 4c). In
addition, gibberellin and 1-Aminocyclopropanecarboxylic acid
showed no differences (Table S3). Moreover, significant differ-
ences were also observed in concentrations of sucrose, trehalose,
D-fructose, glucose and D-sorbitol between YIGE1 NT and OE
siblings, which were decreased in OE developing ears (Fig. 4c).
To determine the cause of the reduction in sugar, and an increase
in auxin, we investigated the 506 DEGs, finding that several
auxin-related genes, including those related to auxin synthesis
and transport, and sugar metabolic genes were differentially
expressed between the YIGE1 NT and OE lines (Fig. 4d). Next,
we measured the expression levels of these genes using qRT-PCR
for NT and OE siblings and found that, consistent with the
results in RNA-seq (Fig. S12), these genes showed significant dif-
ferences in expression levels. Therefore, YIGE1 may modulate
maize inflorescence development via involvement in auxin and
sugar signaling (Fig. 4e).

YIGE1 was a target of selection during maize domestication
and improvement

Domestication gives rise to a loss of genetic diversity in either the
whole genome or in specific regions, meaning that favorable alle-
les for important traits are enriched (Doebley et al., 2006). Since
EL is a key trait of the domestication syndrome, and YIGE1 plays
an important role in affecting natural variations of EL, we postu-
lated that it may be a target of selection during maize domestica-
tion. To test this, we used the c. 3 kb region sequence of YIGE1
in 70 Zea parviglumis and 226 landrace accessions. The
nucleotide diversity (p) in the 1 kb promoter region of YIGE1
was much lower in maize than in Z. parviglumis, being similar to
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that found in landraces (Fig. 5a). Tajima’s D value for the pro-
moter region was negative in maize and Z. parviglumis but posi-
tive in the landraces. Moreover, Fu and Li’s D value for this

region deviated significantly from neutrality in maize but did not
do so either in Z. parviglumis or the landraces. These results sug-
gest that this locus has been subjected to balancing selection in
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landraces and directional selection in maize and Z. parviglumis.
Next, we genotyped 70 Z. parviglumis and 226 landrace acces-
sions at Chr1.S_50679974 with Kompetitive Allele-Specific
PCR (KASP; Ertiro et al., 2015). The favorable C allele of
Chr1.S_50679974 showed a higher frequency in maize inbred
lines than in Z. parviglumis (0.84 vs 0.56) or landraces (0.84 vs
0.62; Fig. 5b). These results suggest that this locus underwent
continuous selection and that the favorable allele was enriched
during maize domestication and improvement. However, the
intensity of selection is not particularly high, meaning that there
is still room for improvement of modern maize.

Ear length exhibits a weakly positive correlation with flowering
time (Fig. S13). Long EL may result in late flowering
(Danilevskaya et al., 2010). The balance of EL and flowering
time is therefore one of the most important considerations in
most modern maize breeding programs. We measured another
16 agronomic traits, but only KNPR and grain weight signifi-
cantly increased without significant effects on flowering time and
other agronomic traits in the OE transgenic lines (Fig. 5c; Tables
S2, S4). Meanwhile, YIGE1 showed no correlation with flowering
time or any other plant architecture trait in the KO lines, mum1
mutants or association mapping population (Tables S4, S5).
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These observations indicate that the increased expression of
YIGE1 could enhance EL, KNPR and grain yield without affect-
ing other agronomic traits, suggesting that it has great potential
for maize improvement.

Discussion

Ear length, which is a complex agronomic trait, shows a positive
correlation with maize grain yield. An increase in EL provides the
potential for more kernels per ear, which leads to a higher yield
(Huo et al., 2016). However, identification of the genetic compo-
nents underlying EL is challenging due to the complexity of the
maize genome and the difficulty of cloning EL QTLs. A GWAS
is a powerful tool for the dissection of complex agronomic traits,
and higher marker density and enlarged population size could
increase its QTL detection power and resolution (Yan et al.,
2011; Yang et al., 2014). In this study, we identified a QTL,

YIGE1, through association mapping (Fig. 1a) which encodes an
unknown protein that positively regulates EL by affecting IM
activity and pistillate floret number (Figs 1b–i, 4a–f). It thus pro-
vides a good example of the power of a GWAS for complex QTL
cloning in maize.

YIGE1 has undergone continuous selection; however, the
intensity of this selection was relatively mild during maize domes-
tication and improvement, and the favorable allele was signifi-
cantly enriched in most modern maize inbred lines (Fig. 5a,b).
Although the frequency of the favorable haplotype is high, it is
not fixed, and about 15% of maize inbred lines could be sub-
jected to more intense selection by molecular breeding in order
to improve yield by increasing EL. A KASP molecular marker has
been developed (Fig. S11) and could easily be used in breeding.
At the same time, YIGE1 positively regulates EL without negative
effects for other agronomic traits (Fig. 1b–i; Table S4). Over-
expression of YIGE1 enhanced EL and grain yield (Fig. 1g–i;

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
eq

ue
nc

y

C allele

0.56
0.62

0.84

T allele

(a) (b)

(–1–0) kb (0–2) kb
π m × 10–3 4.77 5.04

Tajima's Dm –0.86 –1.37
Fu and Li's Dm –2.41* 0.29

π l × 10–3 5.50 5.66
Tajima's Dl 1.34 1.78

Fu and Li's Dl 0.76 2.05**
π t × 10–3 6.12 5.89

Tajima's Dz –0.98 –2.37
Fu and Li's Dz –1.04 –3.47 0

10
20
30
40
50
60
70

OE1 OE2

NT
OE

G
ra

in
 w

ei
gh

t (
g)

41 45 59 20

0

2

4

6

8

10

12

14

16

18

0 500 1000 1500 2000 2500 3000–1000 –500 0 500 1000 1500 2000

π
×

10
–3

Z. Parviglumis

Landrace
Maize

bp

(c)

Fig. 5 Nucleotide diversity analysis of YIGE1 and its potential for increasing yield. (a) Nucleotide diversity (p) at the YIGE1 locus in Zea parviglumis,
landrace and maize was calculated using a 100-bp sliding window and 25-bp step size. The black four-pointed star on the x-axis represents the position of
Chr1.S_50679974. Taj’ma’s D values and Fu and Li’s D values for different regions are shown. *, P < 0.05; **, P < 0.02. (b) Allele frequency for
Chr1.S_50679974 in Z. parviglumis, landrace and maize inbred lines. (c) Grain weight for nontransgenic (NT) and YIGE1 overexpression (OE) siblings in
two independent transgenic events. Data are mean values� SE, and significant differences were determined using one-way analysis of variance (ANOVA).

New Phytologist (2022) 234: 513–526
www.newphytologist.com

� 2021 The Authors

New Phytologist� 2021 New Phytologist Foundation

Research

New
Phytologist522



Table S2), suggesting that YIGE1 affects maize EL via regulation
of its expression level and can be better utilized via OE lines in
future breeding. CRISPR/Cas9 technology has already shown its
superiority in precision breeding through editing the promoter
regions of target genes to obtain quantitative variation of impor-
tant agronomic traits such as fruit size, inflorescence branches,
and plant architecture in tomato (Rodriguez-Leal et al., 2017)
and yield-related traits in maize (Liu et al., 2021). In present
study, the SNP Chr1.S_50679974, located in the promoter of
YIGE1, had large effects on its promoter strength, expression
level and EL (Fig. 3). Therefore, an alternative future approach
could be to edit the promoter of YIGE1 to obtain a super-
promoter with a higher expression level that produces longer
ears.

Sugar has been shown to act as a signaling molecule that medi-
ates auxin signaling, which regulates the growth of kernels
(LeClere et al., 2010), buds (Bertheloot et al., 2020) and roots
(Yuan et al., 2020) in plants. However, little is known about the
interaction between sugar and auxin signaling in maize inflores-
cence morphogenesis. YIGE1 OE lines with larger IMs, higher
floret numbers and longer ELs (Fig. 3a–f) showed decreased sugar
concentrations and increased auxin concentrations (Fig. 4c), find-
ings that are indicative of the fact that sugar can regulate plant
growth (Schluepmann et al., 2004; van Dijken et al., 2004;
Satoh-Nagasawa et al., 2006) and low sugar concentrations can
promote auxin accumulation (LeClere et al., 2008, 2010). YIGE1
may be involved in the interactions between sugar and auxin sig-
naling that regulate maize inflorescence development. However,
unravelling the exact mechanism by which this is achieved will
require considerable future research effort. Auxin plays a critical
role in the regulation of floret production in maize ears (Carraro
et al., 2006; McSteen et al., 2007; Gallavotti et al., 2008a;
Phillips et al., 2011; Jia et al., 2020), consistent with our observa-
tion that increasing auxin concentrations generated larger IMs,
which are able to accommodate more SPMs, higher numbers of
florets per row, and ultimately a higher KNPR, longer EL and
higher grain yield (Figs 3–5). The plant growth hormone auxin
controls cell identity, division, and expansion (Yuan et al., 2020).
However, it is not known whether the larger IM is a result of cell
division or expansion, because it is difficult to directly measure
the cell number and cell size in the IM. YIGE1 is a cytoplasmic
protein (Fig. S6c), which renders it very unlikely that YIGE1 reg-
ulates other genes at the transcriptional stage. Hence, we specu-
late that the YIGE1 protein may function in complexes to
regulate maize inflorescence and ear development. We used a
yeast two hybrid assay with YIGE1 as a relatively quick method
of detecting protein–protein interactions. A total of seven poten-
tial interactions were detected (Table S6), and four were further
selected (based on expression patterns and predicted subcellular
localization) for verification by yeast two hybrid and luciferase
complementation assay in tobacco (Table S6). Unfortunately,
none of them was verified by further point to point screening. In
addition, YIGI1 has no known domains, which renders effective
antibody synthesis difficult, meaning that it is not easy for us to
directly detect the proteins which interact with YIGE1. Analyzing
how YIGE1 alters the concentrations of sugar and auxin to

regulate maize inflorescence development not only deepens our
understanding of its molecular mechanism, but also provides a
novel route for the genetic improvement of maize.
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