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SHORT SUMMARY 21 

This study developed an integrated peptidogenomic pipeline and firstly applied it for 22 

large-scale identification of non-conventional peptides (NCPs) in plant. The identified 23 

NCPs, which were derived from introns, 3’UTRs, 5’UTRs, junctions and intergenic 24 

regions, showed distinct characteristics compared to conventional peptides (CPs). 25 

Functional analysis unveiled potential function of NCPs in plant genetic regulation of 26 

complex traits and evolution.  27 



ABSTRACT 28 

Non-conventional peptides (NCPs), which include small open reading frame-encoded 29 

peptides, play critical roles in fundamental biological processes. Here we developed 30 

an integrated peptidogenomic pipeline using high-throughput mass spectra to probe a 31 

customized six-frame translation database and applied it to large-scale identification 32 

of NCPs in plants. Altogether, 1,993 and 1,860 NCPs were unambiguously identified 33 

in maize and Arabidopsis, respectively. The NCPs showed distinct characteristics 34 

compared to conventional peptides (CPs) and were derived from introns, 3’UTRs, 35 

5’UTRs, junctions and intergenic regions. These results revealed that translation 36 

events in unannotated transcripts occurred more broadly than previously thought. In 37 

addition, maize NCPs were found to be enriched within regions associated with 38 

phenotypic variations and domestication selection, indicating their potential function 39 

in plant genetic regulations of complex traits and evolution. Summarily, this study 40 

provides an unbiased and global view of plant NCPs. The identification of large-scale 41 

NCPs in both monocot and dicot plants reveals that a much larger portion of the plant 42 

genome can be translated to biologically functional molecules, which has important 43 

implications in functional genomic studies. The present study also provides a useful 44 

resource for the characterization of more hidden NCPs in other plants. 45 

 46 
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INTRODUCTION 49 

Peptides, typically composed of 2 to 100 amino acid residues, represent the small 50 

biological molecules with important roles in biology (Tavormina et al., 2015). Small 51 

signaling peptides (SSPs) or peptide hormones, which are a class of short peptides 52 

ranging from 5 to 75 amino acid in length, also play critical roles in various biological 53 

processes. For example, the discovery and application of the peptide hormone insulin 54 

was one of the greatest achievements in the 20th century (Banting and Best, 2007). 55 

Studies over the past few decades have mainly focused on conventional peptides (CPs) 56 

derived from annotated coding sequences (CDSs) or conventional open reading 57 

frames. Recently, a novel class of peptides, now defined as non-conventional peptides 58 

(NCPs) in this study, has caught significant attentions as functionally important 59 

endogenous peptides in various organisms (Ma et al., 2014; Couso and Patraquim, 60 

2017; Plaza et al., 2017; Jackson et al., 2018; Chen et al., 2020a). These NCPs are 61 

derived from previously unannotated CDSs, such as intergenic regions, untranslated 62 

regions (UTRs), introns and various types of junctions, as well as different reading 63 

frames from annotated CDSs. 64 

A primary report of the NCP was published more than two decades ago, where a 65 

10 amino acid peptide was identified to be translated from ENOD40, a gene 66 

previously annotated as untranslated (van de Sande et al., 1996). Thereafter, the 67 

ENOD40 was further proved to play a key role in regulating the response to auxin in 68 

the flowering plants (Rohrig et al., 2002). In animals and humans, NCPs are known to 69 

play important roles in a diverse range of cellular processes, such as calcium transport 70 

(Magny et al., 2013), embryogenesis (Kondo et al., 2010), muscle performance 71 

(Nelson et al., 2016; Matsumoto et al., 2017), translation control (Hinnebusch et al., 72 

2016; Couso and Patraquim, 2017; Plaza et al., 2017), immune response (Laumont et 73 

al., 2016) and stress resistance (Khitun et al., 2019). Functional NCPs, such as 74 

POLARIS (Casson et al., 2002), ROTUNDIFOLIA4 (Narita et al., 2004), KOD 75 

(Blanvillain et al., 2011), OSIP108 (De Coninck et al., 2013), miPEP165a 76 

(Lauressergues et al., 2015), PSEP1, PSEP3, PSEP18, PSEP25 (Fesenko et al., 2019), 77 



CDC26 (Lorenzo-Orts et al., 2019) and vvi-miPEP171d1 (Chen et al., 2020b), have 78 

been reported in plants. These studies have demonstrated that NCPs play essential 79 

roles in plant development, environmental responses and translational control. 80 

However, due to the limitations of genomic annotation and peptidomic technology, a 81 

plethora of NCPs are usually dismissed from further analysis or annotation in plants 82 

(Andrews and Rothnagel, 2014; Yin et al., 2019). 83 

The increasing importance of NCPs has led to emerging strategies for their 84 

discovery. The advent of next-generation sequencing and developments in 85 

bioinformatics has boosted the research of NCPs at a genome-wide scale. 86 

Computational approaches based on sequence similarities have been developed to 87 

identify potential translational small open reading frames (sORFs) in noncoding 88 

sequences (Hurst, 2002; Kastenmayer et al., 2006; Hanada et al., 2007; Makarewich 89 

and Olson, 2017). However, conservation and homology analysis of sORFs is difficult 90 

due to the short sequence and low conservation score. Another strategy is to use 91 

ribosome profiling by sequencing ribosome-protected fragments that enables mapping 92 

of a genome-wide set of transcripts that are being translated (Ingolia et al., 2009; 93 

Ingolia et al., 2011; Ingolia, 2016; Shiber et al., 2018). In recent years, ribosome 94 

profiling has been widely used to confirm the translation of non-annotated ORFs in 95 

various species (Ruiz-Orera et al., 2014; Wu et al., 2019; Kurihara et al., 2020). While 96 

ribosome profiling itself is an experimental approach, the evaluation of the coding 97 

potential of an identified region of interest is in fact mostly computational 98 

(Makarewich and Olson, 2017). Existing ribosome profiling techniques have 99 

undergone significant modifications and enhancements, which have improved reliably 100 

in protein-coding transcript identification (Hsu et al., 2016; Bazin et al., 2017). As a 101 

different strategy from ribosome profiling, mass spectrometry (MS)-based method is 102 

able to detect peptides that are translated from a sORF and can thereby directly 103 

validate the protein-coding potential of the transcript (Castellana et al., 2008; 104 

Makarewich and Olson, 2017). Recently, a new method referred as peptidogenomics, 105 

which integrates peptidomics (based on high throughput MS/MS) and genomics, has 106 

emerged as a promising strategy for deep analysis of the endogenous NCPs (Kersten 107 



et al., 2011; Harvey et al., 2015). As an efficient strategy, peptidogenomics has been 108 

successfully used in microorganisms and humans (Liu et al., 2011; Slavoff et al., 2013; 109 

Mohimani and Pevzner, 2016; Mohimani et al., 2018). However, owing to 110 

experimental and computational issues, such as endogenous peptide enrichment, 111 

nonspecific protease digestion and lack of complete peptide reference databases, the 112 

identification of NCPs using peptidogenomics in plant is still challenging. 113 

Here, we developed an integrated peptidogenomic pipeline for large-scale 114 

identification of NCPs in monocot and dicot plants. High-throughput mass spectra of 115 

endogenous peptides were used to probe Ensembl protein database and the 116 

customized peptidogenomic database derived from the six-frame translation of 117 

genomic sequences. Our results revealed that NCPs could be derived from not only 118 

coding sequences but also allegedly noncoding sequences. NCPs showed a distinct 119 

distribution pattern from that of CPs. In addition, we found that the NCPs were 120 

enriched within the genomic regions associated with phenotypic variations and 121 

domestication, indicating their potential functions in regulating phenotypes and 122 

shaping the evolution of the plants. These results represent a large-scale identification 123 

of endogenous NCPs in plants through the integrated peptidogenomic pipeline and 124 

thus provide valuable information towards the understanding of the biological 125 

function of these hidden molecules. 126 

RESULTS 127 

An Integrated Peptidogenomic Pipeline for NCPs Identification in 128 

Plants 129 

Directly detecting NCPs is the most definitive evidence of their existence. To 130 

facilitate plant NCPs discovery, we developed and applied an integrated 131 

peptidogenomic pipeline for large-scale identification of plant NCPs (Figure 1A). For 132 

sample preparation, an acid extraction buffer consisting of 1% trifluoroacetic acid 133 

(TFA) was utilized based on a previous study (Chen et al., 2014). In addition, heat 134 

stabilization by water bath combined with plant protease inhibitors was applied to 135 

diminish nonspecific protease digestion. Trichloroacetic acid (TCA)-acetone 136 



precipitation was also applied to establish an optimized sample preparation protocol. 137 

Then, plant endogenous peptides were enriched from larger protein fragments by 138 

centrifugation through 10 kDa cutoff filters before they were analyzed with liquid 139 

chromatography tandem mass spectrometry (LC-MS/MS). 140 

To capture the endogenous peptides globally present in maize, the Mascot search 141 

engine was used to match the resulting mass spectrum data set against Ensembl 142 

protein database and customized peptidogenomic database, respectively. The 143 

customized peptidogenomic database was constructed using the six-frame translation 144 

of maize genomic sequences (Figure 1B). As a result, we obtained a ~5.2-gigabase 145 

(Gb) customized peptidogenomic database (containing ~136 million sequences). To 146 

avoid an inflated search space for the spectral sequences, we stored the information 147 

collected for every peptide (including the encoding schemes and genomic locus) in an 148 

index file with the peptide’s data. This reduced the digital memory required to store 149 

our sequence data significantly. In addition, based on the locus-tracking approach, we 150 

used an automated process to map the peptide spectrum to their genomic loci, which 151 

enabled the pipeline for large-scale discovery of NCPs more effectively. 152 

Large-scale Identification of CPs and NCPs in Maize 153 

All the reliably identified peptides from Ensembl protein and customized 154 

peptidogenomic databases were combined and used to identify both CPs and NCPs. In 155 

total, 748 and 3,932 non-redundant peptides were identified based on Ensembl protein 156 

database and customized peptidogenomic database, respectively (Figure 2A; Tables 157 

S1 and S2). Of these, 3,315 peptides were specifically identified by the customized 158 

peptidogenomic database (Figure 2A). Then, by mapping these peptides to genome 159 

loci and applying series filtering steps (see Methods), a total of 2,837 endogenous 160 

peptides were unambiguously assigned to a single genomic locus for each of the 161 

peptides. Among them, 1,993 (70.3%) NCPs (Table S3) and 844 (29.7%) CPs (Figure 162 

2B; Table S4) were identified. The median length of CPs was 16 amino acids, while 163 

that of NCPs was 12 amino acids, with significant difference (Figure 2C), and 164 

approximately 90% of the peptides were less than 23 amino acids for CPs and 16 165 



amino acids for NCPs (Figure S1). Furthermore, the average molecular weight of 166 

NCPs was 1325.22 Da, with 99.25% (1,978) of peptides having a molecular weight 167 

less than 2500 Da. By contrast, the average molecular weight of CPs was 1742.16 Da, 168 

with 91.94% (776) of peptides having a molecular weight less than 2500 Da (Figure 169 

2D and 2E). These results indicated that NCPs constituted a significant portion of 170 

plant peptidome, and showed different characteristics compared with CPs. 171 

Distribution Patterns of CPs and NCPs 172 

Both CPs and NCPs were found unevenly distributed on the chromosomes of maize 173 

(Figure 3A). For CPs, most peptides were distributed near the telomeres, whereas 174 

NCPs were homogeneously located between centromeres and telomeres of each maize 175 

chromosome (Figure 3B). Furthermore, a total of 138 hot regions (defined by 6 Mb 176 

windows; see Methods) were discovered (Figure 3A). A total of 58 CPs hot regions 177 

containing 446 (52.84%) peptides were observed, whereas 81 NCPs hot regions 178 

containing 545 (27.35%) peptides were present (Figure 3A). Among these hot regions, 179 

one hot region located in chromosome 5 was common for both CPs and NCPs. 180 

Additionally, the number of NCPs in each chromosome was positively correlated with 181 

the chromosomal length (r=0.07; p=0.0099), but no correlation between the number 182 

of CPs and chromosomal length was detected (Figure 3C). 183 

The interval between two adjacent peptides could be used to accurately define 184 

peptides coverage over the genome. We found that 74.88% (632) of CPs were less 185 

than 500 kb apart, whereas only 39.74% (792) of NCPs were within 500 kb of each 186 

other (Figure 3D). We then compared the locations of these peptides to gene models, 187 

798 (94.55%) CPs were found to be located in regions less than 2 kb from canonical 188 

translation start site (TSS), in contrast, this value was 336 (16.86%) for NCPs (Figure 189 

3E). These results reveal the widespread existence of NCPs translation along the 190 

genome and the distinct distribution patterns of CPs and NCPs. 191 

To gain further insights into the mechanisms responsible for the generation of 192 

CPs and NCPs, we analyzed the nucleotide sequences of CPs and NCPs source 193 

transcripts to predict their translation start sites. We observed a preponderance of 194 



non-AUG translation start sites in both CPs and NCPs (Tables S3 and S4). Although it 195 

was long thought that eukaryotic translation almost always initiates at the AUG start 196 

codon, our results reveal that non-AUG start codons are used at an astonishing 197 

frequency. This finding is consistent with the results of previous peptidomics studies 198 

that more than 90% endogenous peptides started with non-AUG codon (Chen et al., 199 

2014; Secher et al., 2016; Corbiere et al., 2018). This result also support those of 200 

ribosome profiling and mass spectrometric studies, which demonstrate that most 201 

ORFs contain non-AUG start sites (Ingolia et al., 2011; Slavoff et al., 2013; Na et al., 202 

2018). 203 

NCPs Derived from both Coding and Noncoding Sequences 204 

By analyzing their origins, 952 (47.77%) NCPs were assigned to the reverse strand in 205 

maize (Figure 4A). Next, by analyzing the location of the NCPs within their 206 

respective gene sources, 1,708 (85.70%) NCPs were derived from intergenic regions, 207 

139 (6.97%) from introns, 89 (4.47%) from out-of-frame exons, 25 (1.25%) from 208 

3’UTRs, 18 (0.90%) from 5’UTRs and 14 (0.70%) from junctions (5’UTR-exon or 209 

intron-exon) (Figure 4B). These results highlight the translation evidence of these 210 

allegedly noncoding sequences. 211 

Length analysis showed that the average lengths of NCPs derived from 212 

intergenic regions and out-of-frame exons were longer than that derived from 213 

junctions (Figure 4C). The average lengths of NCPs derived from 3’UTRs and 214 

5’UTRs were the two shortest (Figure 4C). Molecular weight distribution analysis 215 

showed that more than 70% (1,407) of NCPs were less than 1500 Da. The average 216 

molecular weight of NCPs derived from intergenic regions was higher than that 217 

derived from introns, out-of-frame exons, 5’UTRs and 3’UTRs (Figure 4D and Figure 218 

S2A). There was no significant difference among the average isoelectric points (PI) 219 

values of NCPs derived from 3’UTRs, introns, intergenic regions, 5’UTRs, 220 

out-of-frame exons and junctions (Figure 4E and Figure S2B). Taken together, these 221 

results indicated that the identified NCPs represented a wide range of 222 

physicochemical properties and NCPs derived from different gene elements showed 223 



different characteristics. 224 

Verification and Validation of NCPs 225 

To verify these identified NCPs, we assigned these peptides to their respective source 226 

genomic locus. For example, NCP RMDAHALR was derived from the 5’UTR of 227 

gene Zm00001d029555 (Figure 5A), and NCP ILTVNLKP was derived from the 228 

3’UTR of gene Zm00001d050172 (Figure 5B). Besides NCPs derived from UTRs, we 229 

also found a large number of NCPs from intergenic regions and introns. For example, 230 

NCP QISVELPGVV was derived from the intergenic region between genes 231 

Zm00001d024336 and Zm00001d024337 (Figure 5C). NCP EGTPKAVGHRQ was 232 

derived from the intron of gene Zm00001d008363 (Figure 5D). Next, 115 NCPs were 233 

synthesized experimentally. The mass spectrometer analysis was performed under the 234 

same conditions as were used for peptidogenomic analysis in this study. As shown in 235 

Figure 5A-D, the spectra of synthetic peptides RMDAHALR, ILTVNLKP, 236 

QISVELPGVV and EGTPKAVGHRQ agreed with the spectral data generated from 237 

the peptidogenomic analysis. Verification of the other 111 NCPs was shown in 238 

Supplemental Dataset 1.  239 

In addition, we performed transcriptomic analyses using published RNA-seq data 240 

from maize. These RNA-seq data include circular RNAs, lncRNAs, mRNAs and 241 

small RNAs. Most NCPs (1,806, 90.62%) identified in the current study received 242 

support from these published databases (Table S3). Among these NCPs, 1,652 were 243 

from lncRNA and 859 from circular RNA (Table S3). The results indicated that these 244 

identified NCPs were likely produced from allegedly noncoding sequences. 245 

Lastly, to validate the identified NCPs with independent methods, the available 246 

ribosome profiling datasets of maize were analyzed. Ribosome profiling, also known 247 

as Ribo-seq (ribosome sequencing), is a method based on deep sequencing of 248 

ribosome-protected fragments. In agreement with translation being the intermediate 249 

step between transcription and the proteome, ribosome profiling has a higher 250 

predictive value of final protein than mRNA-seq (van Heesch et al., 2019). The 251 

ribosome profiling analysis showed that 732 (36.73%) NCPs detected by 252 



peptidogenomics were also uncovered by ribosome profiling (Figure 5E; Table S5). 253 

This validation rate of 36.73% between these two methods is consistent with previous 254 

reports (Samandi et al., 2017; van Heesch et al., 2019; Chen et al., 2020a). Among 255 

these NCPs, 564 derived from intergenic regions, 82 from out-of-frame exons, 49 256 

from introns, 15 from 5’UTRs, 14 from 3’UTRs and eight from junctions. The 257 

proportions of the NCPs detected by both methods out of numbers detected by 258 

peptidogenomic analysis were: 33.02% from intergenic regions, 92.13% from 259 

out-of-frame exons, 35.25% from introns, 83.33% from 5'UTRs, 56.00% from 260 

3'UTRs and 57.14% from the junctions (Figure 5F). These NCPs, which were 261 

detected by two different methods, provide a high-confidence collection of NCPs for 262 

further studies. We speculate that those NCPs, which were detected only by 263 

peptidogenomics, were either erroneous calls or stable peptides from unstable RNAs. 264 

NCPs are Enriched in Regions Associated with Phenotypic Variations 265 

and Domestication Selection 266 

In maize, coding regions only comprise a small fraction of the whole genome, and the 267 

vast majority of the genome has been considered noncoding regions. Genome-wide 268 

association study and quantitative trait locus (QTLs) analysis have identified a lot of 269 

functional elements in the noncoding regions in maize (Liu et al., 2017). The fact that 270 

1,993 (70.3%) NCPs were derived from noncoding sequences prompts us to believe 271 

that they are of significant functional relevance. Therefore, we examined the 272 

enrichment of these NCPs with identified QTLs underlying various traits, and with 273 

those regions presumed under domestication selection. 274 

Compared to randomly selected genomic sequence with same distance 275 

distribution and number (see Methods), it was revealed that significant single 276 

nucleotide polymorphisms (SNPs) associated with plant traits appeared to be 277 

significantly enriched within the regions of NCPs (P < 0.02, Upper-tail test; Figure 278 

6A; Table S6). Considering the presence of genetic linkage in association mapping, 279 

we further extended the positions of associated SNPs to the flanking 20 kb regions. 280 

Statistical analysis showed that these NCPs were more significantly enriched at the 281 



QTL regions compared to the random regions (P < 7.4e-06; Figure 6B; Table S7). 282 

Among the significant enriched SNPs, several were found exactly located within 283 

NCPs, which showed associations to various phenotypes including kernel length, 284 

disease (maize rough dwarf virus, MRDV), oil and amino acid contents (Figure 6C; 285 

Table S6). For instance, an isoleucine-threonine transition at one significant SNP 286 

(chr1.s_244454699, A > G; P < 9.42e-5) associated with kernel length, was located 287 

within the NCP KTYSIIIYFIHVGH, which was mapped to 13 kb upstream 288 

noncoding regions of gene Zm00001d032949 (Uncharacterized) (Figure 6D). Another 289 

significant SNP (chr3.s_136872577, C > T; P < 2.09e-07) related to oil content, 290 

resulting in a transition from proline to leucine was associated with the NCP 291 

LELKLIHSHPN, which was mapped to 5 kb upstream noncoding regions of gene 292 

Zm00001d041769 (Figure 6E). These results reveal the potential functions of these 293 

NCPs in the regulation of plant phenotypes. 294 

The relationship between domestication and NCPs was also investigated. 295 

Compared to randomly selected genomic sequences with the same distance 296 

distribution and number, it was found that the NCPs were enriched within the 297 

candidate regions that are associated with domestication selection (p < 7.3e-6, 298 

Upper-tail test; Figure 6F). A total of 55 NCPs were identified within the 299 

domestication candidate regions (Table S8). While further validations are highly 300 

needed to explore which domesticated traits are exactly affected and what’s the indeed 301 

mechanism, this result, for the first time as far as we know, unveils the likely 302 

inclusion of NCPs during domestication, providing another hidden layer of functional 303 

importance of NCPs. 304 

The Applicability of the Peptidogenomics Pipeline to Arabidopsis 305 

To extend this pipeline to other plants, the dicot model plant Arabidopsis was used to 306 

test the wider applicability of peptidogenomic method. As a result, 2,353 and 3,871 307 

non-redundant peptides were identified by the Ensembl protein database and 308 

customized peptidogenomic database (Tables S9 and S10), respectively. Of these, 309 

2,270 peptides were specifically identified by the customized peptidogenomic 310 



database (Figure 7A). In total, 1,860 (44.04%) NCPs (Table S11) and 2,363 (55.96%) 311 

CPs were obtained in Arabidopsis (Table S12). The median length of NCPs was 11 312 

amino acids, which was shorter than that of CPs (13 amino acids) (Figure 7B). 313 

Furthermore, the average molecular weight of NCPs (1208.34 Da) was lower than that 314 

of CPs (1420.89 Da) (Figure S3). In addition, we found that the NCPs identified in 315 

Arabidopsis have shorter peptide length and lower molecular weight than that in 316 

maize (Table 13). 317 

By analyzing the origins of NCPs, 943 (50.70%) NCPs were from the reverse 318 

strand (Figure 7C). By analyzing the locations of the NCPs within their respective 319 

gene sources, 666 (35.81%) NCPs were derived from intergenic regions, 239 (12.85%) 320 

from introns, 651 (35.00%) from out-of-frame exons, 91 (4.89%) from 3’UTRs, 63 321 

(3.39%) from 5’UTRs and 150 (8.06%) from junctions (Figure 7D). The number of 322 

NCPs derived from intergenic regions in Arabidopsis was lower than that in maize, 323 

whereas the number of NCPs from other gene elements in Arabidopsis were higher 324 

than that in maize (Table S13). Length analysis showed that the average length of 325 

NCPs derived from 3’UTRs was the longest and that from introns the shortest (Figure 326 

7E). The average molecular weight of NCPs derived from out-of-frame exons was 327 

higher than that from 5’UTRs and intergenic regions (Figure 7F and Figure S4A). The 328 

average PI value of NCPs derived from out-of-frame exons and junctions were higher 329 

than that from introns (Figure 7G and Figure S4B). 330 

Taken together, these results show that the developed peptidogenomic pipeline 331 

can also be used in dicot plants such as Arabidopsis. The translation of unannotated 332 

transcripts is widespread in both monocot and dicot plants, though they may have 333 

different translation patterns. 334 

DISCUSSION 335 

Endogenous peptides are formed mainly by protein degradation, gene-encoding and 336 

gene-independent enzymatic formation in vivo (Peng et al., 2020). The emergence of 337 

peptidomics makes it possible for large-scale identification of endogenous peptides 338 

extracted from tissues (Slavoff et al., 2013; Secher et al., 2016). However, the study of 339 



the peptidomics can be particularly challenging due to nonspecific protease digestion 340 

during sample preparation (Farrokhi et al., 2008; Secher et al., 2016). Despite the 341 

wide use of protease inhibitors in plant peptide extraction, studies in animals and 342 

humans have demonstrated that protease inhibitors are not effective enough in 343 

preventing peptide degradation (Svensson et al., 2003; Parkin et al., 2005). Recently, 344 

heat stabilization, such as focused microwave radiation, integrated with protease 345 

inhibitors has been successfully used in animals to minimize proteolytic activity prior 346 

to peptide isolation (Secher et al., 2016). However, similar attempt has not been 347 

experimented in plants so far. 348 

Plant cells are more complex than animal cells due to the presence of additional 349 

components such as cell wall, large vacuoles and chloroplast, making the isolation of 350 

complete endogenous peptides in plants more challenging. In this study, in addition to 351 

the combination of heat stabilization by water bath and plant protease inhibitors to 352 

minimize nonspecific protease digestion in the peptide extraction, TCA-acetone 353 

precipitation was also included in the extraction protocol. TCA/acetone precipitation 354 

is very useful for removing interfering compounds, such as polysaccharides, 355 

polyphenols, pigments and lipids in plants (Mechin et al., 2007). Therefore, this step 356 

can help limit the interference of non-protein or non-peptide compounds during 357 

endogenous peptides extraction. We speculate that the protease associated nonspecific 358 

degradation during peptide extraction will be a long-lasting issue as there is no 359 

effective extraction protocol to completely prevent this from occurring. Therefore, 360 

more efforts should be made to develop a more effective peptide extraction protocol 361 

that can retain endogenous peptides in the states as they were in vivo for peptidomics 362 

study. In addition, it should be noted that the peptides from protein degradation within 363 

the cell is also another type of endogenous peptides in addition to those produced 364 

from gene-encoding (Peng et al., 2020). Protein degradation ubiquitously occurs in 365 

living organisms and the enzymatic degradation behavior of proteins is closely related 366 

to precursor protein status and enzyme activity in living organisms (Rubinsztein, 367 

2006). Therefore, peptidomic data is also a good resource for the assessment of the 368 

potential protease/peptidase activity involving in the hydrolysis process, though this 369 



topic is beyond the scope of this study. 370 

Standard peptidomics approaches identify peptides by matching experimentally 371 

observed spectra to databases of predicted spectra based on annotated genes. However, 372 

such approach would not identify NCPs. The most effective strategy to do so is to 373 

integrate peptidomics with the six-frame translation of genome, which is referred as 374 

peptidgenomics (Kersten et al., 2011; Slavoff et al., 2013). Database derived from the 375 

six-frame translation of the entire genome can be used to identify peptides encoded in 376 

any genomic region (Castellana et al., 2014; Nesvizhskii, 2014; Yang et al., 2018). 377 

Peptidogenomics has already proven its value in identifying peptides at the 378 

genome-scale in microorganisms and humans (Kersten et al., 2011; Liu et al., 2011; 379 

Nguyen et al., 2013; Slavoff et al., 2013; Mohimani and Pevzner, 2016; Mohimani et 380 

al., 2018). In this study, we combined the peptidomics with a customized 381 

peptidogenomic database derived from six-frame translation and Ensembl protein 382 

databases to generate a peptidogenomic pipeline for both maize and Arabidopsis. To 383 

the best of our knowledge, this is the first report on a peptidogenomic pipeline to 384 

analyze NCPs in plants. With this strategy, 1,993 and 1,860 NCPs have been 385 

identified in maize and Arabidopsis, respectively. The present study demonstrates that 386 

integrative peptidogenomic strategies can provide a more holistic overview of the 387 

peptidome to not only identify CPs but also NCPs. The results showed that a sizeable 388 

proportion of peptides was found to be NCPs, indicating that many previously alleged 389 

noncoding sequences, including 5’UTRs, 3’UTRs, intergenic regions and introns are 390 

actually translatable. 391 

Recently, the translation of lncRNAs has gained increasing attention (Kim et al., 392 

2014; Saghatelian and Couso, 2015; Ransohoff et al., 2018). For example, a peptide 393 

encoded by a lncRNA was identified as myoregulin, which acts as an important 394 

regulator of calcium uptake in skeletal muscle (Anderson et al., 2015). A peptide 395 

encoded from a lncRNA epithelial cell program regulator (EPR) controls epithelial 396 

proliferation (Rossi et al., 2019). In addition, by overexpression and mutation analysis, 397 

peptides encoded by lncRNAs were shown to be involved in the regulation of growth 398 

and differentiation in moss (Fesenko et al., 2019). In the present study, 1,652 NCPs 399 



derived from lncRNA have been identified in maize, and future characterization of 400 

these NCPs will be an important milestone in understanding the function of plant 401 

lncRNAs. 402 

Upstream ORFs (uORFs) and their encoded peptides have been intensively 403 

investigated due to their potential to regulate the translation of downstream main 404 

ORFs (mORFs) (Hellens et al., 2016; Hsu and Benfey, 2018). The translation of these 405 

uORFs can also be regulated in response to developmental or environmental cues 406 

(Starck et al., 2016; Yin et al., 2019). In this study, we identified 18 and 63 NCPs 407 

derived from 5’UTRs in maize and Arabidopsis, respectively. Among the 18 maize 408 

NCPs, 15 NCPs were also uncovered by previous ribosome profiling studies (Lei et 409 

al., 2015; Chotewutmontri and Barkan, 2016; Zoschke et al., 2017; Chotewutmontri 410 

and Barkan, 2018; Jiang et al., 2019), which further supports the results of the 411 

peptidogenomic analysis in the present study. In contrast to NCPs derived from the 412 

5’UTRs of genes, NCPs from 3’UTRs have attracted little attention because they have 413 

been considered to be noncoding for a long time (Ingolia et al., 2011). Until only 414 

recently, the presence of peptides assigned to 3’UTRs was identified, for example, in 415 

moss (Fesenko et al., 2019). In our study, we identified 25 and 91 NCPs that derived 416 

from 3’UTRs in maize and Arabidopsis, which further suggests that 3′UTRs encoded 417 

peptides deserve much more attention as these peptides may have vital biological 418 

roles in organisms. 419 

Many maize QTLs have been found to be highly associated with noncoding 420 

regions (Clark et al., 2006; Silvio et al., 2007; Studer et al., 2011; Castelletti et al., 421 

2014; Huang et al., 2018). Recently, we also examined several cases of intergenic 422 

QTLs that regulate traits by chromatin loops (Li et al., 2019; Peng et al., 2019). 423 

Apparently, it is important to study the regulatory elements in the noncoding 424 

sequences for a better understanding of the biological mechanisms underlying 425 

phenotypic traits. In this study, we found that NCPs were significantly enriched within 426 

QTLs regions. For example, NCPs were enriched within regions associated with 427 

disease resistance, kernel length, amino acid and oil contents, indicating the important 428 

functionality of NCPs in regulating these traits. Domestication is a tractable system 429 



for subsequent evolutionary changes. Identification of genes involved in 430 

domestication will help us to understand the process of domestication and to 431 

accelerate the process of domesticating new crops (Wang et al., 2018). Several recent 432 

studies have used morphological, genetic, genomic and archaeological techniques to 433 

determine the progressive fixation of different domestication genes in maize (da 434 

Fonseca et al., 2015; Liu et al., 2015; Vallebueno-Estrada et al., 2016). However, to 435 

date, the molecular genetic architecture of maize domestication remains unclear. The 436 

result of statistical analysis in this study showed significant enrichment of NCPs in 437 

the domestication selection regions, which may uncover the underlying functional 438 

sites for the evolution of the maize due to selection. 439 

Taken together, in contrast to previous attempts of using computational 440 

approaches or ribosome profiling strategy to discover unannotated plant coding 441 

sequences, we directly and successfully identified large-scale plant NCPs based on the 442 

integrated peptidogenomic pipeline. The identification of NCPs reveals that many 443 

5’UTRs, 3’UTRs, intergenic regions, introns, and junctions are translated and some 444 

likely express functional peptides. These findings also provide insights into the 445 

discovery of novel functional genes or proteins through the characterization of NCPs 446 

in a wider array of plants. 447 

MATERIALS AND METHODS 448 

Sample Preparation 449 

The maize inbred line B73 was grown in a greenhouse under a 15-h light (28 °C)/9-h 450 

(25 °C) dark photoperiod to 3 leaf stage. Arabidopsis thaliana (Columbia-0) was 451 

grown in a greenhouse under a 16-h light (22 °C)/8-h (21 °C) dark photoperiod to 4 452 

leaf stage. Three replicates were applied for each species. The collected leaves were 453 

quickly frozen in liquid nitrogen and stored at -80 °C until analyzed. 454 

Peptide Extraction 455 

Maize and Arabidopsis leaves (2 g) as described above were quickly grounded in 456 

liquid nitrogen, respectively. The powder was firstly heated in the water at 95 °C for 5 457 

min. The samples were then precipitated in 10% (w/v) trichloroacetic acid/acetone 458 



solution at -20 °C for 1 h, and the precipitate was washed with cold acetone until the 459 

supernatant was colorless. The supernatant was discarded, the vacuum-dried 460 

precipitate transferred to 1% TFA solution containing plant protease inhibitor cocktail 461 

(Sigma, America), and incubated for an hour at 4 °C. It should be noted that TFA can’t 462 

be added before heat stabilization, because TFA is a strongly irritating liquid which 463 

decomposes and emits toxic fluoride gas when heated. The fractions were 464 

ultrasonicated on ice (40 W, 6 s ultrasonic at a time, every 8 s, and 5 times) and then 465 

centrifuged at 10,000 ×g for 20 min at 4 °C. The supernatants were filtered through 466 

10-kDa molecular weight cutoff centrifuge filter (Millipore, MA, USA) according to 467 

the manufacturer’s instructions. Peptide mixtures were desalted using C18 Cartridges 468 

(Empore, SPE Cartridges C18, 7 mm inner diameter, 3 mL volume, Sigma). The 469 

peptide fractions were vacuum-evaporated using a vacuum centrifugation 470 

concentrator and reconstituted in 40 μl of 0.1% TFA solution for LC-MS/MS analysis.  471 

LC-MS/MS Analysis 472 

For endogenous peptide profiling, MS experiments were performed on a Q Exactive 473 

mass spectrometer as described previously (Wang et al., 2019). Five μg of peptide 474 

mixture was loaded onto a C18-reversed phase column (Thermo Scientific Easy 475 

Column, 10 cm length, 75 μm inner diameter, 3 μm resin) in buffer A (2% acetonitrile 476 

and 0.1% formic acid) and separated with a linear gradient of buffer B (80% 477 

acetonitrile and 0.1% formic acid) at a flow rate of 250 nL/min controlled by 478 

IntelliFlow technology over 120 min. MS data were acquired using a data-dependent 479 

top10 method by dynamically choosing the most abundant precursor ions from the 480 

survey scan (300-1800 m/z) for higher-energy collisional dissociation (HCD) 481 

fragmentation. The determination of the target value was based on predictive 482 

Automatic Gain Control. The dynamic exclusion duration was 25 s. Survey scans 483 

were acquired at a resolution of 70,000 at m/z 200 and resolution for HCD spectra 484 

was set to 17, 500 at m/z 200. The normalized collision energy was 30 eV and the 485 

underfill ratio, which specified the minimum percentage of the target value likely to 486 

be reached at maximum fill time, was defined as 0.1%. The instrument was run with 487 

peptide recognition mode enabled. 488 



Peptide Database Construction 489 

The complete genomes of maize and Arabidopsis were downloaded from Ensembl 490 

Plants (ftp://ftp.ensemblgenomes.org/pub/plants/release-41/fasta/zea_mays/dna/; and 491 

ftp://ftp.ensemblgenomes.org/pub/plants/release-45/fasta/arabidopsis_thaliana/dna/) 492 

in FASTA format. The putative peptide database was derived from the six-frame 493 

translation of genomic sequences using EMBOSS:6.6.0. Peptides were terminated 494 

whenever a stop codon was encountered. Then the next peptide was started at the next 495 

nucleotide following the previous stop codon. Instances of ambiguous nucleotides 496 

(represented by 'N' in the genome sequence) were replaced with random nucleotides; 497 

other ambiguous characters were also replaced with random nucleotides depending 498 

upon their symbol. The genomic coordinates and orientation were recorded for each 499 

peptide. Resulting amino acid sequences for each chromosome were recorded in a 500 

FASTA formatted sequence file. 501 

Peptide Identification by Mascot 502 

The Mascot search engine (Matrix Science) was used to search against both the 503 

Ensembl protein for maize 504 

(ftp://ftp.ensemblgenomes.org/pub/plants/release-41/fasta/zea_mays), and 505 

Arabidopsis 506 

(ftp://ftp.ensemblgenomes.org/pub/plants/release-45/fasta/arabidopsis_thaliana/pep/), 507 

and the customized peptidogenomic databases to identify peptides. Mass tolerances 508 

on precursor and fragment ions were set to 5 ppm and 0.02 Da, respectively. The 509 

Mascot score (≥ 25) and false discovery rate (FDR < 0.05) were applied to achieve 510 

final peptides for the Ensembl protein database. The same Mascot score was then 511 

applied to the peptide list identified with the customized peptidogenomic database as 512 

described previously (Laumont et al., 2016). Raw data files were converted to peptide 513 

maps comprising m/z values, charge states, retention time and intensity for all 514 

detected ions above a threshold of 8,000 counts. 515 

In order to obtain quantitative information for the peptides, the MS data were 516 

analyzed using MaxQuant software (version 1.3.0.5). The MS data were searched 517 

against the identified peptide sequences. An initial search was set at a precursor mass 518 



window of 6 ppm, followed by an enzymatic cleavage rule of none and a mass 519 

tolerance of 20 ppm for fragment ions. The cutoff of global FDR for peptide 520 

identification was set to 0.01. Peptide intensities were used to indicate quantitative 521 

information of peptide. 522 

Identification of CPs and NCPs 523 

Peptides identified from Ensembl protein and customized peptidogenomic databases 524 

were combined and filtered with the stringent FDR cutoff (score ≥ 25; FDR < 0.05). 525 

The resulting peptides were assigned to their respective source genes and their 526 

MS/MS spectra were manually verified. Then, we mapped the subset of 527 

peptide-encoding regions to discard peptides coming from multiple locations in the 528 

genome (1,207 peptides for maize and 410 peptides for Arabidopsis). To determine 529 

the type of sequence (within the source gene) generating each peptide, we used the 530 

intersect function of the BEDTools suite to the bed file of the candidates as well as the 531 

Ensembl gff file. Peptides derived from annotated CDSs or conventional open reading 532 

frames were classified as CPs. Peptides derived from intergenic regions, UTRs, 533 

different reading frames from annotated CDSs, introns and various types of junctions 534 

(UTR-exon or exon-intron) were classified as NCPs.  535 

Peptide Distribution at the Genome Level 536 

Peptide density was calculated using a sliding window of 6 Mb with 3 Mb steps. Hot 537 

regions were defined as the peptide count of more than 10. We downloaded the 538 

annotated maize genome from https://plants.ensembl.org/index.html and extracted the 539 

physical coordinates of TSSs. We searched for the closest TSS for each peptide to 540 

draw a frequency plot of distance between each peptide and its TSS. To accurately 541 

estimate the peptide number at the chromosome level, position of both CPs and NCPs 542 

was divided by chromosome arm length. 543 

Verification of NCPs Using Synthetic Peptides 544 

The peptide sequences were chosen from different categories of NCPs identified by 545 

the peptidogenomic analysis and synthesized by GL Biochem (Shanghai) Ltd. Dried 546 

peptides were diluted with 0.1% formic acid (Yang et al., 2018), and each synthetic 547 

peptide was separately subjected to Q Exactive mass spectrometer for MS analysis 548 



with the same parameters as those used for the peptidogenomic analysis. 549 

RNA-seq and Ribosome Profiling Analysis 550 

RNA-seq datasets were retrieved from the NCBI short Read Archive database 551 

(https://www.ncbi.nlm.nih.gov/sra). These datasets including circular RNAs (Jeck et 552 

al., 2013), lncRNAs (Lv et al., 2016; Zhu et al., 2017), mRNAs (Lei et al., 2015; Han 553 

et al., 2019), small RNAs (He et al., 2019). In addition, the publicly available 554 

ribosome profiling datasets of maize (Lei et al., 2015; Chotewutmontri and Barkan, 555 

2016; Zoschke et al., 2017; Chotewutmontri and Barkan, 2018; Jiang et al., 2019) 556 

were also analyzed. The maize genome sequences and annotation files were obtained 557 

from the Ensembl Plants (https://plants.ensembl.org/Zea_mays/Info/Index). After 558 

filtering out the low-quality reads, the remaining reads were mapped to the maize 559 

genome. Then, the read count was calculated for each NCP. 560 

Association Analysis of NCPs with SNP/regions Associated with a Collection of 561 

Traits and the Regions Under Domestication Selection 562 

A genome-wide association study was performed using a global germplasm collection 563 

of 527 elite maize inbred lines (Li et al., 2013) using the mixed-linear-model based on 564 

previously reported traits, including kernel-related yield traits (Liu et al., 2017), 565 

diseases (Chen et al., 2015), as well as kernel oil (Li et al., 2013) and amino acid 566 

contents (Deng et al., 2017). SNPs called from the whole-genome shotgun (~20× for 567 

each line) sequences generated by a recent study (Yang et al., 2019) were used in 568 

association analysis. We generated 100 random genomic sets as background, each 569 

assigned with the same features as NCPs, including the total number, the number 570 

along different chromosomes, and the peptide length distribution (Figure S5). The 100 571 

random sets were used to estimate the mean and standard deviation of the normal 572 

distribution for background overlapping ratios. The p-values of enrichment of the 573 

observed ratio compared to the normal background distribution were calculated using 574 

the “pnorm” function (with lower.tail = FALSE) of R, representing the upper tail 575 

p-value of the test statistic and indicating the probability of observed value exceeding 576 

the expected distribution. Candidate regions associated with domestication were 577 

identified by comparing the 527 maize inbred lines to 183 teosinte samples, and the 578 



test of enrichment was estimated using the aforementioned test as QTL analysis 579 

(Figure S6). 580 

Data Analysis and Visualization 581 

Unless stated otherwise, analysis and visualization were performed using R. All code 582 

are available on request to the corresponding author. 583 
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FIGURE CAPTIONS 916 

Figure 1. Peptidogenomic Workflow for Plant NCPs Identification. 917 

(A) Peptidogenomic workflow for plant NCPs identification. Endogenous peptides 918 

from plant leaves were extracted using an optimized protocol. Heat stabilization by 919 

water bath at 95 °C combined with an acid extraction buffer containing 1% TFA and 920 

plant protease inhibitors was applied to minimize the peptide degradation during 921 

peptide extraction. Plant endogenous peptides were enriched from larger protein 922 

fragments by centrifugation through 10 kDa cutoff filters. The peptides were analyzed 923 

on a high-resolution and high-accuracy mass spectrometer. MS/MS spectra data were 924 

searched against the customized peptidogenomic database and Ensembl protein 925 

database using Mascot searching engine. The resulting peptides were used to filter out 926 

the CPs and thus obtain the NCPs. (B) Customized peptidogenomic database 927 

construction. The complete maize genomic sequence was downloaded from Ensembl 928 

Plants in FASTA format, and then translated into six-frame using EMBOSS:6.6.0 929 

package. The translation of the genomic DNA started from the first, second, and third 930 

nucleotides on each strand of each chromosome and ended when a stop codon was 931 

encountered. Triplets were translated according to the standard genetic code to assign 932 

a one letter symbol for each amino acid and a ‘*’ symbol for a stop codon. A peptide 933 

index file containing genomic coordinates and orientations 934 

(e.g. >7:150140249-150140647|+|p2) was assigned to each peptide sequence. 935 

Figure 2. Overview of the Peptidogenomic Results. 936 

(A) Venn diagram showing the number of peptides identified by Ensembl protein and 937 

customized peptidogenomic databases. The areas shown in the diagram are not 938 

proportional to the number of peptides in each group. (B) The number of CPs and 939 

NCPs identified through peptidogenomic analysis. (C) Length of CPs and NCPs. 940 

Boxes represent the second and third quartiles, whiskers represent 1.5 ×interquartile 941 

range. Fisher’s exact test was used for hypothesis testing, * p < 0.05. (D) The 942 

molecular weight distribution of CPs (n=844). (E) Molecular weight distribution of 943 

NCPs (n=1,993). The rug plot above the x-axis represents the frequency at each 944 



exposure level. 945 

Figure 3. CPs and NCPs Distribution in Maize. 946 

(A) The genome-wide distribution of CPs (green) and NCPs (red). For each 947 

chromosome, the peptide distribution pattern includes three columns. Left: CPs (green) 948 

and NCPs (red) mapped onto chromosomes. Black circles are the centromeres. 949 

Middle: CPs (green) and NCPs (red) distribution patterns by using a window size of 6 950 

Mb and 3 Mb steps based on B73 reference genome. Right: hot region distribution of 951 

CPs (green) and NCPs (red). Hot regions were defined as more than 10 peptides in a 952 

window size of 6 Mb. (B) The normalized distribution of CPs and NCPs was shown 953 

along the chromosomal arms. The x-axis represents the normalized length of each arm 954 

with the centromere set to “0” and the telomere to “1”. The y-axis reports the number 955 

of both CPs (green) and NCPs (red). (C) Correlations between CP or NCP counts and 956 

chromosomal length (Pearson correlation: CPs, r=0.09, p=0.7948; NCPs, r=0.77, 957 

p=0.0099**). (D) The histogram of the distances between two of adjacent CPs or 958 

NCPs. (E) The histograms showing the distance from each CP or NCP to the closest 959 

TSS. 960 

Figure 4. Characteristics of NCPs. 961 

(A) Number of NCPs derived from both forward and reverse strands. (B) Number of 962 

NCPs derived from different gene elements. (C) Length of NCPs derived from 963 

different gene elements. Boxes represent the second and third quartiles, whiskers 964 

represent 1.5 × the interquartile ranges. Fisher’s exact test was used for hypothesis 965 

testing, * p < 0.05. Violin plots that combine box plot and kernel density trace to 966 

describe the distribution patterns of molecular weight (D) and isoelectric point (E). 967 

Tomato: NCPs derived from 3’UTRs (n=25); beige: NCPs derived from introns 968 

(n=139); lilac: NCPs derived from intergenic regions (n=1,708); yellow: NCPs 969 

derived from 5’UTRs (n=18); green: NCPs derived from out-of-frame exons (n=139); 970 

light blue: NCPs derived from junctions (n=14). The black bars and thin lines within 971 

the violin plots represent the interquartile ranges and the entire data ranges, 972 

respectively. White dots in the center indicate the average values. The width of the 973 

violin plot represents the density of the distribution. Fisher’s exact test was used for 974 



hypothesis testing, * p < 0.05. 975 

Figure 5. Verification and Validation of NCPs. 976 

(A) NCP RMDAHALR mapped to the 5’UTR of a gene in chromosome 1 (left). 977 

Verification of this NCP by comparing the spectra of the peptide identified by the 978 

integrative peptidogenomic pipeline (middle) to that of synthetic peptide (right). (B) 979 

NCP ILTVNLKP mapped to the 3’UTR of a gene in chromosome 4 (left). Verification 980 

of this NCP by comparing the spectra of the peptide identified by the integrative 981 

peptidogenomic pipeline (middle) to that of synthetic peptide (right). (C) NCP 982 

QISVELPGVV mapped to the intergenic region between two genes in chromosome 983 

10 (left). Verification of this NCP by comparing the spectra of the peptide identified 984 

by the integrative peptidogenomic pipeline (middle) to that of synthetic peptide (right). 985 

(D) NCP EGTPKAVGHRQ mapped to the intron of a gene in chromosome 8 (Left). 986 

Verification of this NCP by comparing the spectra of the peptide identified by the 987 

integrative peptidogenomic pipeline (middle) to that of synthetic peptide (right). (E) 988 

Percentages of NCPs detected by peptidogenomics and ribosome profiling. (F) 989 

Percentages of NCPs derived from different gene elements detected by 990 

peptidogenomics and ribosome profiling. 991 

Figure 6. Quantitative Trait Loci (QTLs) Associated Significantly with 992 

Phenotypic Traits Linked to NCPs.  993 

(A) The enrichment of NCPs within QTLs. (B) The enrichment of NCPs located 994 

within 20 kb flanking regions of significant SNPs. (C) Diagram showing the 995 

distribution of significant SNPs associated with plant traits within NCPs, one SNP 996 

associated with kernel length, one with disease (maize rough dwarf virus, MRDV), 997 

two with oil content, and four with amino acid content. (D) An isoleucine–threonine 998 

transition caused by a SNP (chr1.s_244454699, A > G; P < 9.42e-5) associated with 999 

kernel length. Significant SNPs are indicated by red dotted lines. The black arrow 1000 

indicates the NCP derived from the reverse strand. (E) The oil content associated 1001 

significant SNP (chr3.s_136872577, C > T; P < 2.09e-07) that leads to a proline to 1002 

leucine substitution in the NCP. The black arrow shows that the NCP was derived 1003 

from the forward strand. (F) The enrichment of NCPs within regions under positive 1004 



selection during maize domestication. The x-axis shows the ratio of overlapping 1005 

between the associated SNPs and the NCPs (Obs), and that between the associated 1006 

SNPs and randomly generated regions (Random). P-values for upper tail test were 1007 

calculated using the “pnorm” function implemented in R (lower.tail = FALSE). 1008 

Figure 7. Identification of NCPs in Arabidopsis. 1009 

(A) Venn diagram showing the number of peptides identified by Ensembl protein and 1010 

customized peptidogenomic databases. (B) Length of CPs and NCPs in Arabidopsis. 1011 

Boxes represent the second and third quartiles, whiskers represent 1.5 × the 1012 

interquartile ranges. Fisher’s exact test was used for hypothesis testing, * p < 0.05. (C) 1013 

Number of NCPs derived from the forward and reverse strands. (D) Number of NCPs 1014 

derived from different gene elements. (E) Length of NCPs derived from different gene 1015 

elements. Boxes represent the second and third quartiles, whiskers represent 1.5 × the 1016 

interquartile ranges. Fisher’s exact test was used for hypothesis testing, * p < 0.05. 1017 

Violin plot combines box plot and kernel density trace to describe the distribution 1018 

patterns of molecular weight (F) and isoelectric point (G). Tomato: NCPs derived 1019 

from 3’UTRs (n=91); beige: NCPs derived from introns (n=239); lilac: NCPs derived 1020 

from intergenic regions (n=666); yellow: NCPs derived from 5’UTRs (n=63); green: 1021 

NCPs derived from out-of-frame exons (n=651); light blue: NCPs derived from 1022 

junctions (n=150). The black bars and thin lines within the violin plots represent the 1023 

interquartile ranges and the entire data ranges, respectively. White dots in the center 1024 

indicate the average values. The width of the violin plot represents the density of the 1025 

distribution. Fisher’s exact test was used for hypothesis testing, * p < 0.05. 1026 

 1027 

SUPPLEMENTAL INFORMATION 1028 

Figure S1. Length Distribution of CPs (A) and NCPs (B) in Maize. 1029 

Figure S2. Molecular Weight and Isoelectric Point Distribution of NCPs in 1030 

Maize. 1031 

(A) Molecular weight of NCPs derived from different gene elements in maize. (B) 1032 

Isoelectric point distribution of NCPs derived from different gene elements in maize. 1033 



Tomato: NCPs derived from 3’UTR (n=25); beige: NCPs derived from introns 1034 

(n=139); lilac: NCPs derived from intergenic regions (n=1,708); yellow: NCPs 1035 

derived from 5’UTRs (n=18); green: NCPs derived from out-of-frame exons (n=139); 1036 

light blue: NCPs derived from junctions (n=14). The rug plot above the x-axis 1037 

represents the frequency at each exposure level. 1038 

Figure S3. Molecular Weight Distribution of CPs and NCPs in Arabidopsis. 1039 

(A) Molecular weight distribution of CPs (n=2,363). (B) Molecular weight 1040 

distribution of NCPs (n=1,860). The rug plot above the x-axis represents the 1041 

frequency at each exposure level. 1042 

Figure S4. Molecular Weight and Isoelectric Point Distribution of NCPs in 1043 

Arabidopsis. 1044 

(A) Molecular weight of NCPs derived from different gene elements in Arabidopsis. 1045 

(B) Isoelectric point distribution of NCPs derived from different gene elements in 1046 

Arabidopsis. Tomato: NCPs derived from 3’UTR (n=91); beige: NCPs derived from 1047 

introns (n=239); lilac: NCPs derived from intergenic regions (n=666); yellow: NCPs 1048 

derived from 5’UTRs (n=63); green: NCPs derived from out-of-frame exons (n=651); 1049 

light blue: NCPs derived from junctions (n=150). The rug plot above the x-axis 1050 

represents the frequency at each exposure level. 1051 

Figure S5. Enrichment Analysis of SNPs within NCPs in Maize. 1052 

Analysis of the ratios of the numbers of NCPs containing SNPs associated with plant 1053 

traits. As a control, we also collected similar ratios in the “random regions” by 1054 

randomly shifting the genomic sequence 100 times in the same chromosome with the 1055 

same number and same distance distribution. Statistics analysis was conducted for the 1056 

within ratio between NCPs and random sequences.  1057 

Figure S6. Enrichment Analysis of NCPs within the Domestication Selection 1058 

Regions in Maize.  1059 

To further explore the relationship between NCPs and domestication, we selected the 1060 

NCPs with at least 1 bp overlapped with the domestication candidate region. As the 1061 

control, we randomly shifted the genomic sequence 100 times in the same 1062 

chromosome to generate random sequences with the same number and same distance 1063 



distribution. 1064 

 1065 

Table S1. Non-redundant Peptides Identified by Protein Database in Maize. 1066 

Table S2. Non-redundant Peptides Identified by the Customized Peptidogenomic 1067 

Database in Maize. 1068 

Table S3. NCPs Identified in Maize. 1069 

Table S4. CPs Identified in Maize. 1070 

Table S5. NCPs Detected by Both Peptidogenomics and Ribosome Profiling in 1071 

Maize. 1072 

Table S6. SNPs Significantly Associated with NCPs in Maize. 1073 

Table S7. SNPs Located within the 20 kb Flanking Regions of NCPs in Maize. 1074 

Table S8. Colocalization of Domestication and NCPs Regions in Maize. 1075 

Table S9. Non-redundant Peptides Identified by Protein Database in 1076 

Arabidopsis. 1077 

Table S10. Non-redundant Peptides Identified by the Customized 1078 

Peptidogenomic Database in Arabidopsis. 1079 

Table S11. NCPs Identified in Arabidopsis. 1080 

Table S12. CPs Identified in Arabidopsis. 1081 

Table S13. Comparisons between the NCPs Identified in Maize and Arabidopsis. 1082 

 1083 

Supplemental Dataset 1. Verification of the other 111 NCPs.  1084 

The other 111 NCPs were verified by comparing the spectra of the endogenous NCPs 1085 

identified by the integrative peptidogenomic pipeline to that of synthetic peptides. 1086 
















