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SHORT SUMMARY

This study developed an integrated peptidogenompielipe and firstly applied it for
large-scale identification of non-conventional pegs (NCPs) in plant. The identified
NCPs, which were derived from introns, 3'UTRs, 5RH, junctions and intergenic
regions, showed distinct characteristics compamedadadnventional peptides (CPs).
Functional analysis unveiled potential functionNSEPs in plant genetic regulation of

complex traits and evolution.
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ABSTRACT

Non-conventional peptides (NCPs), which include lso@en reading frame-encoded
peptides, play critical roles in fundamental biot@d) processes. Here we developed
an integrated peptidogenomic pipeline using higbu#bghput mass spectra to probe a
customized six-frame translation database and eghito large-scale identification
of NCPs in plants. Altogether, 1,993 and 1,860 N@Es= unambiguously identified
in maize and Arabidopsis, respectively. The NCPesw&u distinct characteristics
compared to conventional peptides (CPs) and wereedefrom introns, 3'UTRS,
5'UTRs, junctions and intergenic regions. Theseultssrevealed that translation
events in unannotated transcripts occurred moradiyahan previously thought. In
addition, maize NCPs were found to be enriched iwitiegions associated with
phenotypic variations and domestication selectiodicating their potential function
in plant genetic regulations of complex traits awblution. Summarily, this study
provides an unbiased and global view of plant NOPg. identification of large-scale
NCPs in both monocot and dicot plants revealsahauch larger portion of the plant
genome can be translated to biologically functiomalecules, which has important
implications in functional genomic studies. Thegenet study also provides a useful

resource for the characterization of more hidderPhl@ other plants.

Key words. non-conventional peptides, small open reading fearpeptidogenomics,

mass spectrometry, six-frame translation, plants
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INTRODUCTION

Peptides, typically composed of 2 to 100 amino aesidues, represent the small
biological molecules with important roles in biojogravormina et al., 2015). Small
signaling peptides (SSPs) or peptide hormones, hwhie a class of short peptides
ranging from 5 to 75 amino acid in length, alsoyptdtical roles in various biological
processes. For example, the discovery and apulicafi the peptide hormone insulin
was one of the greatest achievements in tHec@btury (Banting and Best, 2007).
Studies over the past few decades have mainly éacas conventional peptides (CPs)
derived fromannotated coding sequences (CDSs) or conventiopah geading
frames. Recently, a novel class of peptides, defined as non-conventional peptides
(NCPs) in this study, has caught significant atter® as functionally important
endogenous peptides in various organisms (Ma ek@l4; Couso and Patraquim,
2017; Plaza et al., 2017; Jackson et al., 2018nGel., 2020a). These NCPs are
derived from previously unannotated CDSs, such#sgenic regions, untranslated
regions (UTRSs), introns and various types of jumtsi as well as different reading
frames from annotated CDSs.

A primary report of the NCP was published more ttvam decades ago, where a
10 amino acid peptide was identified to be traeslatrom ENOD40, a gene
previously annotated as untranslated (van de Sahdd., 1996). Thereafter, the
ENODA40 was further proved to play a key role inulaging the response to auxin in
the flowering plants (Rohrig et al., 2002). In aalmmand humans, NCPs are known to
play important roles in a diverse range of cellyglarcesses, such as calcium transport
(Magny et al., 2013), embryogenesis (Kondo et 2010), muscle performance
(Nelson et al., 2016; Matsumoto et al., 2017), dlaon control (Hinnebusch et al.,
2016; Couso and Patraquim, 2017; Plaza et al.,)2@hwmune response (Laumont et
al.,, 2016) and stress resistance (Khitun et all9p0Functional NCPs, such as
POLARIS (Casson et al.,, 2002), ROTUNDIFOLIA4 (Nariet al., 2004), KOD
(Blanvillain et al., 2011), OSIP108 (De Coninck at, 2013), miPEP165a
(Lauressergues et al., 2015), PSEP1, PSEP3, PSEBE®25 (Fesenko et al., 2019),
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CDC26 (Lorenzo-Orts et al., 2019) and vvi-miPEP17{@hen et al., 2020b), have
been reported in plants. These studies have demtsttthat NCPs play essential
roles in plant development, environmental responaed translational control.
However, due to the limitations of genomic annotatand peptidomic technology, a
plethora of NCPs are usually dismissed from furténealysis or annotation in plants
(Andrews and Rothnagel, 2014; Yin et al., 2019).

The increasing importance of NCPs has led to emgrgirategies for their
discovery. The advent of next-generation sequencargl developments in
bioinformatics has boosted the research of NCPsaagenome-wide scale.
Computational approaches based on sequence stregahave been developed to
identify potential translational small open readifigmes (SORFs) in noncoding
sequences (Hurst, 2002; Kastenmayer et al., 2086adtth et al., 2007; Makarewich
and Olson, 2017). However, conservation and honyodoglysis of SORFs is difficult
due to the short sequence and low conservatiores@orother strategy is to use
ribosome profiling by sequencing ribosome-protedtagments that enables mapping
of a genome-wide set of transcripts that are beéiagslated (Ingolia et al., 2009;
Ingolia et al., 2011; Ingolia, 2016; Shiber et &018). In recent years, ribosome
profiling has been widely used to confirm the ttatisn of non-annotated ORFs in
various species (Ruiz-Orera et al., 2014; Wu e2819; Kurihara et al., 2020). While
ribosome profiling itself is an experimental apmioathe evaluation of the coding
potential of an identified region of interest is #act mostly computational
(Makarewich and Olson, 2017). Existing ribosome fipng techniques have
undergone significant modifications and enhanceseavitich have improved reliably
in protein-coding transcript identification (Hsuadt, 2016; Bazin et al., 2017). As a
different strategy from ribosome profiling, maseapometry (MS)-based method is
able to detect peptides that are translated frosORF and can thereby directly
validate the protein-coding potential of the traimsc (Castellana et al., 2008;
Makarewich and Olson, 2017). Recently, a new metieéelred as peptidogenomics,
which integrates peptidomics (based on high thrpugMS/MS) and genomics, has

emerged as a promising strategy for deep analygisecendogenous NCPs (Kersten
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et al., 2011; Harvey et al., 2015). As an efficistrtategy, peptidogenomics has been
successfully used in microorganisms and humansetal., 2011; Slavoff et al., 2013;
Mohimani and Pevzner, 2016; Mohimani et al., 201Bjowever, owing to
experimental and computational issues, such asgemdos peptide enrichment,
nonspecific protease digestion and lack of compbetetide reference databases, the
identification of NCPs using peptidogenomics innple still challenging.

Here, we developed an integrated peptidogenomielipg for large-scale
identification of NCPs in monocot and dicot plartiégh-throughput mass spectra of
endogenous peptides were used to probe Ensembeirprolatabase and the
customized peptidogenomic database derived from sikeérame translation of
genomic sequences. Our results revealed that NGHd be derived from not only
coding sequences but also allegedly noncoding segse NCPs showed a distinct
distribution pattern from that of CPs. In additiome found that the NCPs were
enriched within the genomic regions associated watienotypic variations and
domestication, indicating their potential functions regulating phenotypes and
shaping the evolution of the plants. These resafisesent a large-scale identification
of endogenous NCPs in plants through the integrpggatidogenomic pipeline and
thus provide valuable information towards the ustierding of the biological

function of these hidden molecules.

RESULTS
An Integrated Peptidogenomic Pipeline for NCPs Identification in

Plants

Directly detecting NCPs is the most definitive ende of their existence. To
facilitate plant NCPs discovery, we developed anppliad an integrated
peptidogenomic pipeline for large-scale identificatof plant NCPs (Figure 1A). For
sample preparation, an acid extraction buffer «timg of 1% trifluoroacetic acid
(TFA) was utilized based on a previous study (Ceeal., 2014). In addition, heat
stabilization by water bath combined with planttpese inhibitors was applied to

diminish nonspecific protease digestion. Trichleet&t acid (TCA)-acetone
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precipitation was also applied to establish annoaed sample preparation protocol.
Then, plant endogenous peptides were enriched femger protein fragments by
centrifugation through 10 kDa cutoff filters befaiteey were analyzed with liquid
chromatography tandem mass spectrometry (LC-MS/MS).

To capture the endogenous peptides globally presengize, the Mascot search
engine was used to match the resulting mass spealata set against Ensembl
protein database and customized peptidogenomicbasta respectively. The
customized peptidogenomic database was construsiad the six-frame translation
of maize genomic sequences (Figure 1B). As a readtobtained a ~5.2-gigabase
(Gb) customized peptidogenomic database (containk®6 million sequences). To
avoid an inflated search space for the spectralesemgs, we stored the information
collected for every peptide (including the encodsegemes and genomic locus) in an
index file with the peptide’s data. This reduced thgital memory required to store
our sequence data significantly. In addition, basedhe locus-tracking approach, we
used an automated process to map the peptide wmetdrtheir genomic loci, which

enabled the pipeline for large-scale discovery 6P more effectively.

L arge-scale | dentification of CPsand NCPsin Maize

All the reliably identified peptides from Ensemblrofein and customized
peptidogenomic databases were combined and useeriify both CPs and NCPs. In
total, 748 and 3,932 non-redundant peptides wenatifted based on Ensembl protein
database and customized peptidogenomic databagectvely (Figure 2A; Tables
S1 and S2). Of these, 3,315 peptides were spdbjficentified by the customized
peptidogenomic database (Figure 2A). Then, by nmapfhese peptides to genome
loci and applying series filtering steps (see Md#)p a total of 2,837 endogenous
peptides were unambiguously assigned to a sing®mge locus for each of the
peptides. Among them, 1,993 (70.3%) NCPs (Tablea®d)844 (29.7%) CPs (Figure
2B; Table S4) were identified. The median lengttCéfs was 16 amino acids, while
that of NCPs was 12 amino acids, with significaiffecence (Figure 2C), and

approximately 90% of the peptides were less thara@to acids for CPs and 16
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amino acids for NCPs (Figure S1). Furthermore, dlierage molecular weight of
NCPs was 1325.22 Da, with 99.25% (1,978) of peptidgaving a molecular weight
less than 2500 Da. By contrast, the average maeuwdight of CPs was 1742.16 Da,
with 91.94% (776) of peptides having a moleculargheless than 2500 Da (Figure
2D and 2E). These results indicated that NCPs itotest a significant portion of

plant peptidome, and showed different charactesstompared with CPs.

Distribution Patterns of CPsand NCPs

Both CPs and NCPs were found unevenly distributedhe chromosomes of maize
(Figure 3A). For CPs, most peptides were distridutear the telomeres, whereas
NCPs were homogeneously located between centrorapdetelomeres of each maize
chromosome (Figure 3Blrurthermore, a total of 138 hot regions (definedébylb
windows; see Methods) were discovered (Figure 2Ajotal of 58 CPs hot regions
containing 446 (52.84%) peptides were observed,redse 81 NCPs hot regions
containing 545 (27.35%) peptides were present (Ei§A). Among these hot regions,
one hot region located in chromosome 5 was comnoonbdth CPs and NCPs.
Additionally, the number of NCPs in each chromosamas positively correlated with
the chromosomal lengti=<0.07; p=0.0099), but no correlation between the number
of CPs and chromosomal length was detected (F@@Q)e

The interval between two adjacent peptides couldidexl to accurately define
peptides coverage over the genome. We found th&88% (632) of CPs were less
than 500 kb apart, whereas only 39.74% (792) of @Bre within 500 kb of each
other (Figure 3D). We then compared the locatidnthese peptides to gene models,
798 (94.55%) CPs were found to be located in regless than 2 kb from canonical
translation start site (TSS), in contrast, thisiealvas 336 (16.86%) for NCPs (Figure
3E). These results reveal the widespread existenddCPs translation along the
genome and the distinct distribution patterns of @GRd NCPs.

To gain further insights into the mechanisms resjie for the generation of
CPs and NCPs, we analyzed the nucleotide sequeric€$s and NCPs source

transcripts to predict their translation start sité/e observed a preponderance of
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non-AUG translation start sites in both CPs and BlCRbles S3 and S4). Although it
was long thought that eukaryotic translation almadstays initiates at the AUG start
codon, our results reveal that non-AUG start codares used at an astonishing
frequency. This finding is consistent with the fleswf previous peptidomics studies
that more than 90% endogenous peptides startedneitbAUG codon (Chen et al.,
2014; Secher et al., 2016; Corbiere et al., 20T8)s result also support those of
ribosome profiling and mass spectrometric studielich demonstrate that most
ORFs contain non-AUG start sites (Ingolia et 8012, Slavoff et al., 2013; Na et al.,
2018).

NCPs Derived from both Coding and Noncoding Sequences

By analyzing their origins, 952 (47.77%) NCPs wassigned to the reverse strand in
maize (Figure 4A). Next, by analyzing the locatioh the NCPs within their
respective gene sources, 1,708 (85.70%) NCPs vezneed from intergenic regions,
139 (6.97%) from introns, 89 (4.47%) from out-cdfie exons, 25 (1.25%) from
3'UTRs, 18 (0.90%) from 5’UTRs and 14 (0.70%) frgamctions (5’UTR-exon or
intron-exon) (Figure 4B). These results highlighe ttranslation evidence of these
allegedly noncoding sequences.

Length analysis showed that the average lengthd\GPs derived from
intergenic regions and out-of-frame exons were donthan that derived from
junctions (Figure 4C). The average lengths of NG@esved from 3'UTRs and
5'UTRs were the two shortest (Figure 4C). Moleculgight distribution analysis
showed that more than 70% (1,407) of NCPs weretlems 1500 Da. The average
molecular weight of NCPs derived from intergenigioms was higher than that
derived from introns, out-of-frame exons, 5UTR&I&UTRs (Figure 4D and Figure
S2A). There was no significant difference among dkierage isoelectric points (PI)
values of NCPs derived from 3'UTRs, introns, inmg regions, 5'UTRS,
out-of-frame exons and junctions (Figure 4E andufégS2B). Taken together, these
results indicated that the identified NCPs represtna wide range of

physicochemical properties and NCPs derived frofferdint gene elements showed
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different characteristics.

Verification and Validation of NCPs

To verify these identified NCPs, we assigned thesaides to their respective source
genomic locus. For example, NCP RMDAHALR was detiieom the 5’UTR of
gene Zm00001d029555 (Figure 5A), and NCP ILTVNLKP was derived from the
3'UTR of geneZm00001d050172 (Figure 5B). Besides NCPs derived from UTRs, we
also found a large number of NCPs from intergeegians and introns. For example,
NCP QISVELPGVV was derived from the intergenic oeygi between genes
Zm00001d024336 and Zm00001d024337 (Figure 5C). NCP EGTPKAVGHRQ was
derived from the intron of ger&m00001d008363 (Figure 5D). Next, 115 NCPs were
synthesized experimentally. The mass spectrometdysis was performed under the
same conditions as were used for peptidogenomiysisan this study. As shown in
Figure 5A-D, the spectra of synthetic peptides RMIWMR, ILTVNLKP,
QISVELPGVV and EGTPKAVGHRQ agreed with the specttata generated from
the peptidogenomic analysis. Verification of thénest 111 NCPs was shown in
Supplemental Dataset 1.

In addition, we performed transcriptomic analysgiag published RNA-seq data
from maize. These RNA-seq data include circular RNAcRNAs, mRNAs and
small RNAs. Most NCPs (1,806, 90.62%) identifiedtive current study received
support from these published databases (Table/A8)ng these NCPs, 1,652 were
from INcRNA and 859 from circular RNA (Table S3nhdresults indicated that these
identified NCPs were likely produced from allegedbncoding sequences.

Lastly, to validate the identified NCPs with indedent methods, the available
ribosome profiling datasets of maize were analyBldosome profiling, also known
as Ribo-seq (ribosome sequencing), is a methoddbase deep sequencing of
ribosome-protected fragments. In agreement withstedion being the intermediate
step between transcription and the proteome, ribes@rofiling has a higher
predictive value of final protein than mRNA-seq rfvaleesch et al., 2019). The

ribosome profiling analysis showed that 732 (36.Y3MCPs detected by
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peptidogenomics were also uncovered by ribosomélipgo(Figure 5E; Table S5).
This validation rate of 36.73% between these twthous is consistent with previous
reports (Samandi et al., 2017; van Heesch et @L9;2Chen et al., 2020a). Among
these NCPs, 564 derived from intergenic regionsfr8éh out-of-frame exons, 49
from introns, 15 from 5’'UTRs, 14 from 3'UTRs andgli from junctions. The
proportions of the NCPs detected by both methods abunumbers detected by
peptidogenomic analysis were: 33.02% from intergeregions, 92.13% from
out-of-frame exons, 35.25% from introns, 83.33%nfr&'UTRs, 56.00% from
3'UTRs and 57.14% from the junctions (Figure 5Fhe3e NCPs, which were
detected by two different methods, provide a highfidence collection of NCPs for
further studies. We speculate that those NCPs, hwinwere detected only by

peptidogenomics, were either erroneous calls dtesi@eptides from unstable RNAs.

NCPs are Enriched in Regions Associated with Phenotypic Variations

and Domestication Selection

In maize, coding regions only comprise a smalltfcercof the whole genome, and the
vast majority of the genome has been consideredatting regions. Genome-wide
association study and quantitative trait locus (@Tanalysis have identified a lot of
functional elements in the noncoding regions inzedLiu et al., 2017). The fact that
1,993 (70.3%) NCPs were derived from noncoding eeges prompts us to believe
that they are of significant functional relevancEherefore, we examined the
enrichment of these NCPs with identified QTLs uhdeg various traits, and with
those regions presumed under domestication sefectio

Compared to randomly selected genomic sequence wadime distance
distribution and number (see Methods), it was riekahat significant single
nucleotide polymorphisms (SNPs) associated withntplaaits appeared to be
significantly enriched within the regions of NCH& < 0.02, Upper-tail test; Figure
6A; Table S6). Considering the presence of gerigtkage in association mapping,
we further extended the positions of associatedsSfdRhe flanking 20 kb regions.

Statistical analysis showed that these NCPs wene msignificantly enriched at the



282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

305

306
307
308
309
310

QTL regions compared to the random regioAs<(7.4e-06; Figure 6B; Table S7).
Among the significant enriched SNPsgveral were found exactly located within
NCPs, which showed associations to various pheestypcluding kernel length,
disease (maize rough dwarf virus, MRDV), oil andiraamacid contents (Figure 6C;
Table S6). For instance, an isoleucine-threonia@sition at one significant SNP
(chrl.s 244454699, A > @ < 9.42e-5) associated with kernel length, was located
within the NCP KTYSIIYFIHVGH, which was mapped td3 kb upstream
noncoding regions of ger®dM00001d032949 (Uncharacterized) (Figure 6D). Another
significant SNP (chr3.s_136872577, C > H;< 2.09e-07) related to oil content,
resulting in a transition from proline to leucineasv associated with the NCP
LELKLIHSHPN, which was mapped to 5 kb upstream maticg regions of gene
Zm00001d041769 (Figure 6E). These results reveal the potentiattions of these
NCPs in the regulation of plant phenotypes.

The relationship between domestication and NCPs walas investigated.
Compared to randomly selected genomic sequencel thié same distance
distribution and number, it was found that the NGRKesre enriched within the
candidate regions that are associated with donadistic selection f < 7.3e-6,
Upper-tail test; Figure 6F). A total of 55 NCPs werdentified within the
domestication candidate regions (Table S8). Whilgher validations are highly
needed to explore which domesticated traits aretlxaffected and what'’s the indeed
mechanism, this result, for the first time as far vae know, unveils the likely
inclusion of NCPs during domestication, providingptner hidden layer of functional

importance of NCPs.

The Applicability of the Peptidogenomics Pipelineto Arabidopsis

To extend this pipeline to other plants, the dioatdel plant Arabidopsis was used to
test the wider applicability of peptidogenomic nethAs a result, 2,353 and 3,871
non-redundant peptides were identified by the Emdeprotein database and

customized peptidogenomic database (Tables S9 a0y ®espectively. Of these,

2,270 peptides were specifically identified by tlastomized peptidogenomic
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database (Figure 7A). In total, 1,860 (44.04%) NCRble S11) and 2,363 (55.96%)
CPs were obtained in Arabidopsis (Table S12). Tleeliam length of NCPs was 11
amino acids, which was shorter than that of CPs dgf8no acids) (Figure 7B).

Furthermore, the average molecular weight of NAR68&.34 Da) was lower than that
of CPs (1420.89 Da) (Figure S3). In addition, wanfd that the NCPs identified in
Arabidopsis have shorter peptide length and loweteoular weight than that in

maize (Table 13).

By analyzing the origins of NCPs, 943 (50.70%) N@Rse from the reverse
strand (Figure 7C). By analyzing the locations leg tNCPs within their respective
gene sources, 666 (35.81%) NCPs were derived fntengenic regions, 239 (12.85%)
from introns, 651 (35.00%) from out-of-frame exo84%, (4.89%) from 3'UTRs, 63
(3.39%) from 5’'UTRs and 150 (8.06%) from junctidifsgure 7D). The number of
NCPs derived from intergenic regions in Arabidopsas lower than that in maize,
whereas the number of NCPs from other gene elenierasabidopsis were higher
than that in maize (Table S13). Length analysisngluibthat the average length of
NCPs derived from 3'UTRs was the longest and ttahfintrons the shortest (Figure
7E). The average molecular weight of NCPs derivedhfout-of-frame exons was
higher than that from 5’UTRs and intergenic regifffigure 7F and Figure S4A). The
average Pl value of NCPs derived from out-of-frarens and junctions were higher
than that from introns (Figure 7G and Figure S4B).

Taken together, these results show that the deseélpgeptidogenomic pipeline
can also be used in dicot plants such as Arabidop$ie translation of unannotated
transcripts is widespread in both monocot and dptants, though they may have

different translation patterns.

DISCUSSION

Endogenous peptides are formed mainly by protegratiation, gene-encoding and
gene-independent enzymatic formationvivo (Peng et al., 2020). The emergence of
peptidomics makes it possible for large-scale ifieation of endogenous peptides

extracted from tissues (Slavoff et al., 2013; Seetal., 2016). However, the study of
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the peptidomics can be particularly challenging thuaeonspecific protease digestion
during sample preparation (Farrokhi et al., 200&Her et al., 2016). Despite the
wide use of protease inhibitors in plant peptidérastion, studies in animals and
humans have demonstrated that protease inhibitarsnat effective enough in
preventing peptide degradation (Svensson et ab3;2Parkin et al., 2005). Recently,
heat stabilization, such as focused microwave tadiaintegrated with protease
inhibitors has been successfully used in animatsitomize proteolytic activity prior

to peptide isolation (Secher et al., 2016). Howegénilar attempt has not been
experimented in plants so far.

Plant cells are more complex than animal adlis to the presence of additional
components such as cell wall, large vacuoles afaragiast, making the isolation of
complete endogenous peptides in plants more clgatignin this study, in addition to
the combination of heat stabilization by water battd plant protease inhibitors to
minimize nonspecific protease digestion in the jgeptextraction, TCA-acetone
precipitation was also included in the extractiootpcol. TCA/acetone precipitation
is very useful for removing interfering compoundsych as polysaccharides,
polyphenols, pigments and lipids in plants (Mecéiral., 2007). Therefore, this step
can help limit the interference of non-protein arnfpeptide compounds during
endogenous peptides extraction. We speculateltbgirbtease associated nonspecific
degradation during peptide extraction will be agdasting issue as there is no
effective extraction protocol to completely prevehis from occurring. Therefore,
more efforts should be made to develop a more tefeepeptide extraction protocol
that can retain endogenous peptides in the statdses weran vivo for peptidomics
study. In addition, it should be noted that thetkgs from protein degradation within
the cell is also another type of endogenous peptideaddition to those produced
from gene-encoding (Peng et al., 2020). Proteirratigion ubiquitously occurs in
living organisms and the enzymatic degradation ehaf proteins is closely related
to precursor protein status and enzyme activityjiving organisms (Rubinsztein,
2006). Therefore, peptidomic data is also a gosduee for the assessment of the

potential protease/peptidase activity involvingtle hydrolysis process, though this
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topic is beyond the scope of this study.

Standard peptidomics approaches identify peptigesmatching experimentally
observed spectra to databases of predicted symtesl on annotated genes. However,
such approach would not identify NCPs. The mostatife strategy to do so is to
integrate peptidomics with the six-frame transkatad genome, which is referred as
peptidgenomics (Kersten et al., 2011; Slavoff et2013). Database derived from the
six-frame translation of the entire genome cand®uo identify peptides encoded in
any genomic region (Castellana et al., 2014; Néskiz, 2014; Yang et al., 2018).
Peptidogenomics has already proven its value imtigeng peptides at the
genome-scale in microorganisms and humans (Keettah, 2011; Liu et al., 2011;
Nguyen et al., 2013; Slavoff et al., 2013; Mohimand Pevzner, 2016; Mohimani et
al.,, 2018). In this study, we combined the peptid@mwith a customized
peptidogenomic database derived from six-framestation and Ensembl protein
databases to generate a peptidogenomic pipelineotbr maize and Arabidopsis. To
the best of our knowledge, this is the first repamta peptidogenomic pipeline to
analyze NCPs in plants. With this strategy, 1,99@ 4,860 NCPs have been
identified in maize and Arabidopsis, respectiv@lye present study demonstrates that
integrative peptidogenomic strategies can providamaae holistic overview of the
peptidome to not only identify CPs but also NCPse Tesults showed that a sizeable
proportion of peptides was found to be NCPs, irtthgathat many previously alleged
noncoding sequences, including 5’UTRs, 3'UTRs, rogeic regions and introns are
actually translatable.

Recently, the translation of IncRNAs has gaineddasing attention (Kim et al.,
2014; Saghatelian and Couso, 2015; Ransohoff e2@l8). For example, a peptide
encoded by a IncRNA was identified as myoregulimiclv acts as an important
regulator of calcium uptake in skeletal muscle (&msdn et al., 2015). A peptide
encoded from a IncRNA epithelial cell program regof (EPR) controls epithelial
proliferation (Rossi et al., 2019). In addition, dyerexpression and mutation analysis,
peptides encoded by IncRNAs were shown to be irbin the regulation of growth

and differentiation in moss (Fesenko et al., 201®Xhe present study, 1,652 NCPs
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derived from IncRNA have been identified in maiaed future characterization of
these NCPs will be an important milestone in undeding the function of plant
INcRNAs.

Upstream ORFs (UORFs) and their encoded peptides haen intensively
investigated due to their potential to regulate ttamslation of downstream main
ORFs (MORFs) (Hellens et al., 2016; Hsu and Ber#@¥g8). The translation of these
UORFs can also be regulated in response to develaimor environmental cues
(Starck et al., 2016; Yin et al., 2019). In thisidst, we identified 18 and 63 NCPs
derived from 5’UTRs in maize and Arabidopsis, respely. Among the 18 maize
NCPs, 15 NCPs were also uncovered by previous aihesprofiling studies (Lei et
al., 2015; Chotewutmontri and Barkan, 2016; Zoscéikal., 2017; Chotewutmontri
and Barkan, 2018; Jiang et al., 2019), which furtbepports the results of the
peptidogenomic analysis in the present study. Imrest to NCPs derived from the
5'UTRs of genes, NCPs from 3'UTRs have attracttttlattention because they have
been considered to be noncoding for a long timgalia et al., 2011). Until only
recently, the presence of peptides assigned to R8Mas identified, for example, in
moss (Fesenko et al., 2019). In our study, we ifledt25 and 91 NCPs that derived
from 3'UTRs in maize and Arabidopsis, which furtlseiggests that3TRs encoded
peptides deserve much more attention as thesedpsptnay have vital biological
roles in organisms.

Many maize QTLs have been found to be highly assedi with noncoding
regions (Clark et al., 2006; Silvio et al., 200Tucr et al., 2011; Castelletti et al.,
2014; Huang et al., 2018). Recently, we also exathiseveral cases of intergenic
QTLs that regulate traits by chromatin loops (Liadt, 2019; Peng et al., 2019).
Apparently, it is important to study the regulatogjements in the noncoding
sequences for a better understanding of the bidbgmechanisms underlying
phenotypic traits. In this study, we found that MG#ere significantly enriched within
QTLs regions. For example, NCPs were enriched witlgigions associated with
disease resistance, kernel length, amino acid amomtents, indicating the important

functionality of NCPs in regulating these traitsorBestication is a tractable system
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for subsequent evolutionary changes. Identificatioh genes involved in
domestication will help us to understand the prsce$ domestication and to
accelerate the process of domesticating new cipsd et al., 2018). Several recent
studies have used morphological, genetic, genomicagchaeological techniques to
determine the progressive fixation of different dstication genes in maize (da
Fonseca et al., 2015; Liu et al., 2015; VallebuEstrada et al., 2016). However, to
date, the molecular genetic architecture of mam®ektication remains unclear. The
result of statistical analysis in this study shoveaghificant enrichment of NCPs in
the domestication selection regions, which may uecdhe underlying functional
sites for the evolution of the maize due to setecti

Taken together, in contrast to previous attemptsusing computational
approaches or ribosome profiling strategy to discounannotated plant coding
sequences, we directly and successfully identliege-scale plant NCPs based on the
integrated peptidogenomic pipeline. The identifmatof NCPs reveals that many
5'UTRs, 3'UTRs, intergenic regions, introns, anadgtions are translated and some
likely express functional peptides. These findirajso provide insights into the
discovery of novel functional genes or protein®tiyh the characterization of NCPs

in a wider array of plants.

MATERIALSAND METHODS

Sample Preparation

The maize inbred line B73 was grown in a greenhaunsker a 15-h light (28 °C)/9-h
(25 °C) dark photoperiotb 3 leaf stageArabidopsis thaliana (Columbia-0) was
grown in a greenhouse under a 16-h light (22 °@)(21 °C) dark photoperiod to 4
leaf stage. Three replicates were applied for epeties. The collected leaves were
quickly frozen in liquid nitrogen and stored at -8D until analyzed.

Peptide Extraction

Maize and Arabidopsis leaves (2 g) as describedealveere quickly grounded in
liquid nitrogen, respectively. The powder was firsteated in the water at 95 °C for 5

min. The samples were then precipitated in 10% Ywrehloroacetic acid/acetone
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solution at -20 °C for 1 h, and the precipitate washed with cold acetone until the
supernatant was colorless. The supernatant wasardest, the vacuum-dried
precipitate transferred to 1% TFA solution contagnplant protease inhibitor cocktail
(Sigma, America), and incubated for an hour at 4If€hould be noted that TFA can'’t
be added before heat stabilization, because TFASBongly irritating liquid which
decomposes and emits toxic fluoride gas when heald®e fractions were
ultrasonicated on ice (40 W, 6 s ultrasonic atreetievery 8 s, and 5 times) and then
centrifuged at 10,000 xg for 20 min at 4 °C. Thpesnatants were filtered through
10-kDa molecular weight cutoff centrifuge filter {INpore, MA, USA) according to
the manufacturer’s instructions. Peptide mixturesendesalted using C18 Cartridges
(Empore, SPE Cartridges C18, 7 mm inner diametenL3volume, Sigma). The
peptide fractions were vacuum-evaporated using a&uwa centrifugation
concentrator and reconstituted inid@®f 0.1% TFA solution for LC-MS/MS analysis.
LC-MS/MSAnalysis

For endogenous peptide profiling, MS experimentsewserformed on a Q Exactive
mass spectrometer as described previously (Warad.,e2019). Fiveug of peptide
mixture was loaded onto a C18-reversed phase col(fhermo Scientific Easy
Column, 10 cm length, 7om inner diameter, 8m resin) in buffer A (2% acetonitrile
and 0.1% formic acid) and separated with a lineadignt of buffer B (80%
acetonitrile and 0.1% formic acid) at a flow raté 260 nL/min controlled by
IntelliFlow technology over 120 min. MS data wergaired using a data-dependent
topl0 method by dynamically choosing the most abangrecursor ions from the
survey scan (300-1800 m/z) for higher-energy doltial dissociation (HCD)
fragmentation. The determination of the target ®alwas based on predictive
Automatic Gain Control. The dynamic exclusion dimatwas 25 s. Survey scans
were acquired at a resolution of 70,000 at m/z &30 resolution for HCD spectra
was set to 17, 500 at m/z 200. The normalized stohi energy was 30 eV and the
underfill ratio, which specified the minimum pertage of the target value likely to
be reached at maximum fill time, was defined agd.The instrument was run with

peptide recognition mode enabled.
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Peptide Database Construction

The complete genomes of maize and Arabidopsis wWevenloaded from Ensembl
Plants (ftp://ftp.ensemblgenomes.org/pub/plantsast-41/fasta/zea_mays/dna/; and
ftp://ftp.ensemblgenomes.org/pub/plants/releaséadt/arabidopsis_thaliana/dna/)

in FASTA format. The putative peptide database wesved from the six-frame
translation of genomic sequences using EMBOSS:6Bdptides were terminated
whenever a stop codon was encountered. Then thgaptide was started at the next
nucleotide following the previous stop codon. Insts of ambiguous nucleotides
(represented by 'N' in the genome sequence) wplacedl with random nucleotides;
other ambiguous characters were also replaced raittom nucleotides depending
upon their symbol. The genomic coordinates andntateon were recorded for each
peptide. Resulting amino acid sequences for eaobnasome were recorded in a
FASTA formatted sequence file.

Peptide | dentification by Mascot

The Mascot search engine (Matrix Science) was ueedsearch against both the

Ensembl protein for maize
(ftp://ftp.ensemblgenomes.org/pub/plants/releaséadth/zea_mays), and
Arabidopsis

(ftp://ftp.ensemblgenomes.org/pub/plants/releagéadt/arabidopsis_thaliana/pep/),
and the customized peptidogenomic databases tdifidgeptides. Mass tolerances
on precursor and fragment ions were set to 5 ppdh(a@2 Da, respectively. The
Mascot scoreX 25) and false discovery rate (FDR < 0.05) wereliaggo achieve
final peptides for the Ensembl protein databasee $ame Mascot score was then
applied to the peptide list identified with the tamized peptidogenomic database as
described previously (Laumont et al., 2016). Rava di¢es were converted to peptide
maps comprising m/z values, charge states, reterttroe and intensity for all
detected ions above a threshold of 8,000 counts.

In order to obtain quantitative information for tpeptides, the MS data were
analyzed using MaxQuant software (version 1.3.0Mhe MS data were searched

against the identified peptide sequences. An Irsgarch was set at a precursor mass
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window of 6 ppm, followed by an enzymatic cleavagé of none and a mass
tolerance of 20 ppm for fragment ions. The cutoff gbobal FDR for peptide
identification was set to 0.01. Peptide intensitie=re used to indicate quantitative
information of peptide.

| dentification of CPsand NCPs

Peptides identified from Ensembl protein and custeoh peptidogenomic databases
were combined and filtered with the stringent FD.Rolf (score> 25; FDR < 0.05).
The resulting peptides were assigned to their ms@e source genes and their
MS/MS spectra were manually verified. Then, we nesabpthe subset of
peptide-encoding regions to discard peptides corfrioigy multiple locations in the
genome (1,207 peptides for maize and 410 peptioledrdabidopsis). To determine
the type of sequence (within the source gene) géingreach peptide, we used the
intersect function of the BEDTools suite to the [fiikxlof the candidates as well as the
Ensembl dff file. Peptides derived from annotat&SS or conventional open reading
frames were classified as CPs. Peptides deriveah firdergenic regions, UTRS,
different reading frames from annotated CDSs, imdrand various types of junctions
(UTR-exon or exon-intron) were classified as NCPs.

Peptide Distribution at the Genome L evel

Peptide density was calculated using a sliding ewnadf 6 Mb with 3 Mb steps. Hot
regions were defined as the peptide count of mbam t10. We downloaded the
annotated maize genome from https://plants.ensergbhdex.html and extracted the
physical coordinates of TSSs. We searched for tbgest TSS for each peptide to
draw a frequency plot of distance between eachigeepind its TSS. To accurately
estimate the peptide number at the chromosome, lpgsition of both CPs and NCPs
was divided by chromosome arm length.

Verification of NCPs Using Synthetic Peptides

The peptide sequences were chosen from differéaagoaes of NCPs identified by
the peptidogenomic analysis and synthesized by ®cHgém (Shanghai) Ltd. Dried
peptides were diluted with 0.1% formic acid (Yarigak, 2018), and each synthetic

peptide was separately subjected to Q Exactive rspsstrometer for MS analysis
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with the same parameters as those used for thelpgphomic analysis.

RNA-seq and Ribosome Profiling Analysis

RNA-seq datasets were retrieved from the NCBI si®etd Archive database
(https://www.ncbi.nim.nih.gov/sra). These datasetiuding circular RNAs (Jeck et
al., 2013), IncRNAs (Lv et al., 2016; Zhu et ab1Z), mRNAs (Lei et al., 2015; Han
et al.,, 2019), small RNAs (He et al., 2019). In iadd, the publicly available
ribosome profiling datasets of maize (Lei et aQ12;, Chotewutmontri and Barkan,
2016; Zoschke et al., 2017; Chotewutmontri and Baykk018; Jiang et al., 2019)
were also analyzed. The maize genome sequencemnanthtion files were obtained
from the Ensembl Plants (https://plants.ensemiZe@ mays/Info/Index). After
filtering out the low-quality reads, the remainingads were mapped to the maize
genome. Then, the read count was calculated fdr Had.

Association Analysis of NCPs with SNP/regions Associated with a Collection of
Traits and the Regions Under Domestication Selection

A genome-wide association study was performed usigpbal germplasm collection
of 527 elite maize inbred lines (Li et al., 2018)ng the mixed-linear-model based on
previously reported traits, including kernel-rethtgield traits (Liu et al., 2017),
diseases (Chen et al., 2015), as well as kernglLoit al., 2013) and amino acid
contents (Deng et al., 2017). SNPs called fronmthele-genome shotgun (~20or
each line) sequences generated by a recent stuahg (¥t al., 2019) were used in
association analysis. We generated 100 random gensgts as background, each
assigned with the same features as NCPs, incluthegotal number, the number
along different chromosomes, and the peptide ledigtiibution (Figure S5). The 100
random sets were used to estimate the mean andastadeviation of the normal
distribution for background overlapping ratios. Tpealues of enrichment of the
observed ratio compared to the normal backgroustlilolition were calculated using
the “pnorm” function (with lower.tail = FALSE) of Rrepresenting the upper tail
p-value of the test statistic and indicating thelyability of observed value exceeding
the expected distribution. Candidate regions aasedi with domestication were

identified by comparing the 527 maize inbred libesl83 teosinte samples, and the
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test of enrichment was estimated using the aforéorad test as QTL analysis
(Figure S6).

Data Analysisand Visualization

Unless stated otherwise, analysis and visualizatiere performed using R. All code

are available on request to the corresponding autho
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FIGURE CAPTIONS

Figure 1. Peptidogenomic Workflow for Plant NCPs | dentification.

(A) Peptidogenomic workflow for plant NCPs identdtion. Endogenous peptides
from plant leaves were extracted using an optimizexocol. Heat stabilization by
water bath at 95 °C combined with an acid extracbaffer containing 1% TFA and
plant protease inhibitors was applied to minimihe peptide degradation during
peptide extraction. Plant endogenous peptides wereched from larger protein
fragments by centrifugation through 10 kDa cutdtéfs. The peptides were analyzed
on a high-resolution and high-accuracy mass speeter. MS/MS spectra data were
searched against the customized peptidogenomichatdaand Ensembl protein
database using Mascot searching engine. The megyléptides were used to filter out
the CPs and thus obtain the NCPs. (B) Customizeatiqmgenomic database
construction. The complete maize genomic sequemsedownloaded from Ensembl
Plants in FASTA format, and then translated into-feame using EMBOSS:6.6.0
package. The translation of the genomic DNA staittenh the first, second, and third
nucleotides on each strand of each chromosome raohedewhen a stop codon was
encountered. Triplets were translated accordingecstandard genetic code to assign
a one letter symbol for each amino acid and aymbol for a stop codon. A peptide
index file containing genomic coordinates and deaeaons
(e.g. >7:150140249-150140647|+|p2) was assigneddo peptide sequence.

Figure 2. Overview of the Peptidogenomic Results.

(A) Venn diagram showing the number of peptidesiidied by Ensembl protein and
customized peptidogenomic databases. The areasnshowhe diagram are not
proportional to the number of peptides in each grqB) The number of CPs and
NCPs identified through peptidogenomic analysis) (€ngth of CPs and NCPs.
Boxes represent the second and third quartilesskehs represent 1.5 xinterquartile
range. Fisher’s exact test was used for hypothiessng, *p < 0.05. (D) The
molecular weight distribution of CPs (n=844). (Eplcular weight distribution of
NCPs (n=1,993). The rug plot above the x-axis regmes the frequency at each
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exposure level.

Figure 3. CPsand NCPs Distribution in Maize.

(A) The genome-wide distribution of CPs (green) aN@Ps (red). For each
chromosome, the peptide distribution pattern inetuthree columns. Left: CPs (green)
and NCPs (red) mapped onto chromosomes. Blackesirakre the centromeres.
Middle: CPs (green) and NCPs (red) distributiortgyats by using a window size of 6
Mb and 3 Mb steps based on B73 reference genorgét:Riot region distribution of
CPs (green) and NCPs (red). Hot regions were ditisemore than 10 peptides in a
window size of 6 Mb. (B) The normalized distributiof CPs and NCPs was shown
along the chromosomal arms. The x-axis represkatadrmalized length of each arm
with the centromere set to “0” and the telomeré&lto The y-axis reports the number
of both CPs (green) and NCPs (red). (C) Correlatioetween CP or NCP counts and
chromosomal length (Pearson correlation: GQRH).09, p=0.7948; NCPs,r=0.77,
p=0.0099**). (D) The histogram of the distances between tivadjacent CPs or
NCPs. (E) The histograms showing the distance feach CP or NCP to the closest
TSS.

Figure 4. Characteristics of NCPs.

(A) Number of NCPs derived from both forward andemrse strands. (B) Number of
NCPs derived from different gene elements. (C) ltlengf NCPs derived from
different gene elements. Boxes represent the seaoddthird quartiles, whiskers
represent 1.5 x the interquartile ranges. Fishexact test was used for hypothesis
testing, *p < 0.05. Violin plots that combine box plot and rkelr density trace to
describe the distribution patterns of molecularghei(D) and isoelectric point (E).
Tomato: NCPs derived from 3'UTRs (n=25); beige: NCéerived from introns
(n=139); lilac: NCPs derived from intergenic regon=1,708); yellow: NCPs
derived from 5’UTRs (n=18); green: NCPs derivedfrout-of-frame exons (n=139);
light blue: NCPs derived from junctions (n=14). Thlack bars and thin lines within
the violin plots represent the interquartile rangasd the entire data ranges,
respectively. White dots in the center indicate dverage values. The width of the

violin plot represents the density of the distribat Fisher’s exact test was used for
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hypothesis testing, py < 0.05.

Figureb5. Verification and Validation of NCPs.

(A) NCP RMDAHALR mapped to the 5’UTR of a gene ihremosome 1 (left).
Verification of this NCP by comparing the spectfatloe peptide identified by the
integrative peptidogenomic pipeline (middle) tottb& synthetic peptide (right). (B)
NCP ILTVNLKP mapped to the 3'UTR of a gene in chasome 4 (left). Verification
of this NCP by comparing the spectra of the pepiddntified by the integrative
peptidogenomic pipeline (middle) to that of synihepeptide (right). (C) NCP
QISVELPGVV mapped to the intergenic region betwéga genes in chromosome
10 (left). Verification of this NCP by comparingettspectra of the peptide identified
by the integrative peptidogenomic pipeline (middtejhat of synthetic peptide (right).
(D) NCP EGTPKAVGHRQ mapped to the intron of a ggmehromosome 8 (Left).
Verification of this NCP by comparing the spectfatlte peptide identified by the
integrative peptidogenomic pipeline (middle) tottbé synthetic peptide (right{E)
Percentages of NCPs detected by peptidogenomicsriandome profiling. (F)
Percentages of NCPs derived from different genememts detected by
peptidogenomics and ribosome profiling.

Figure 6. Quantitative Trait Loci (QTLs) Associated Significantly with
Phenotypic Traits Linked to NCPs.

(A) The enrichment of NCPs within QTLs. (B) The iehment of NCPs located
within 20 kb flanking regions of significant SNP&C) Diagram showing the
distribution of significant SNPs associated witlargl traits within NCPs, one SNP
associated with kernel length, one with diseasezgneough dwarf virus, MRDV),
two with oil content, and four with amino acid cent. (D) An isoleucine—threonine
transition caused by a SNP (chrl.s 244454699, A P & 9.42e-5) associated with
kernel length. Significant SNPs are indicated by detted lines. The black arrow
indicates the NCP derived from the reverse strdBil.The oil content associated
significant SNP (chr3.s_136872577, C >F'< 2.09e-07) that leads to a proline to
leucine substitution in the NCP. The black arrowves that the NCP was derived

from the forward strand. (F) The enrichment of N@®Rthin regions under positive
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selection during maize domestication. The x-axiswshthe ratio of overlapping
between the associated SNPs and the NCPs (Obs}hanfletween the associated
SNPs and randomly generated regions (Rand@&avplues for upper tail test were
calculated using the “pnorm” function implementadR (lower.tail = FALSE).
Figure7. Identification of NCPsin Arabidopsis.

(A) Venn diagram showing the number of peptidesiified by Ensembl protein and
customized peptidogenomic databases. (B) LengtbR# and NCPs in Arabidopsis.
Boxes represent the second and third quartilesskehs represent 1.5 x the
interquartile ranges. Fisher’s exact test was fieeldypothesis testing, p < 0.05. (C)
Number of NCPs derived from the forward and revstsgnds. (D) Number of NCPs
derived from different gene elements. (E) LengtiNGIPs derived from different gene
elements. Boxes represent the second and thirdilgaawhiskers represent 1.5 x the
interquartile ranges. Fisher’s exact test was dsedhypothesis testing, p < 0.05.
Violin plot combines box plot and kernel densitpde to describe the distribution
patterns of molecular weight (F) and isoelectrienpdG). Tomato: NCPs derived
from 3'UTRs (n=91); beige: NCPs derived from intsqm=239); lilac: NCPs derived
from intergenic regions (n=666); yellow: NCPs dedvVrom 5’'UTRs (n=63); green:
NCPs derived from out-of-frame exons (n=651); lidgite: NCPs derived from
junctions (n=150). The black bars and thin linethwmi the violin plots represent the
interquartile ranges and the entire data rangepertively. White dots in the center
indicate the average values. The width of the miplot represents the density of the

distribution. Fisher’s exact test was used for higpsis testing, p < 0.05.

SUPPLEMENTAL INFORMATION

Figure S1. Length Distribution of CPs(A) and NCPs (B) in Maize.

Figure S2. Molecular Weight and Isoelectric Point Distribution of NCPs in
Maize.

(A) Molecular weight of NCPs derived from differegeéne elements in maize. (B)

Isoelectric point distribution of NCPs derived fradifferent gene elements in maize.
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Tomato: NCPs derived from 3'UTR (n=25); beige: NCé&erived from introns
(n=139); lilac: NCPs derived from intergenic regofn=1,708); yellow: NCPs
derived from 5’'UTRs (n=18); green: NCPs derivedrfrout-of-frame exons (n=139);
light blue: NCPs derived from junctions (n=14). Theg plot above the x-axis
represents the frequency at each exposure level.

Figure S3. Molecular Weight Distribution of CPsand NCPsin Arabidopsis.

(A) Molecular weight distribution of CPs (n=2,363]B) Molecular weight
distribution of NCPs (n=1,860). The rug plot abothe x-axis represents the
frequency at each exposure level.

Figure $4. Molecular Weight and Isoelectric Point Distribution of NCPs in
Arabidopsis.

(A) Molecular weight of NCPs derived from differeggéne elements in Arabidopsis.
(B) Isoelectric point distribution of NCPs derivém different gene elements in
Arabidopsis. Tomato: NCPs derived from 3'UTR (ns94¢ige: NCPs derived from
introns (n=239); lilac: NCPs derived from intergenegions (n=666); yellow: NCPs
derived from 5’UTRs (n=63); green: NCPs derivedfrout-of-frame exons (n=651);
light blue: NCPs derived from junctions (n=150).eThug plot above the x-axis
represents the frequency at each exposure level.

Figure S5. Enrichment Analysis of SNPswithin NCPsin Maize.

Analysis of the ratios of the numbers of NCPs cmimig SNPs associated with plant
traits. As a control, we also collected similariagatin the “random regions” by
randomly shifting the genomic sequence 100 timdkénsame chromosome with the
same number and same distance distribution. $tatealysis was conducted for the
within ratio between NCPs and random sequences.

Figure S6. Enrichment Analysis of NCPs within the Domestication Selection
Regionsin Maize.

To further explore the relationship between NCR$ @omestication, we selected the
NCPs with at least 1 bp overlapped with the domastn candidate region. As the
control, we randomly shifted the genomic sequen€@® iimes in the same

chromosome to generate random sequences with tie samber and same distance
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Table S1. Non-redundant Peptides | dentified by Protein Databasein Maize.

Table S2. Non-redundant Peptides Identified by the Customized Peptidogenomic
Databasein Maize.

Table S3. NCPs | dentified in Maize.

Table 4. CPsIdentified in Maize.

Table S5. NCPs Detected by Both Peptidogenomics and Ribosome Profiling in
Maize.

Table S6. SNPs Significantly Associated with NCPsin Maize.

Table S7. SNPs L ocated within the 20 kb Flanking Regions of NCPsin Maize.

Table S8. Colocalization of Domestication and NCPs Regionsin Maize.

Table S9. Non-redundant Peptides Identified by Protein Database in

Arabidopsis.

Table S10. Non-redundant Peptides Identified by the Customized
Peptidogenomic Databasein Arabidopsis.

Table S11. NCPs I dentified in Arabidopsis.

Table S12. CPsIdentified in Arabidopsis.

Table S13. Comparisons between the NCPs I dentified in Maize and Arabidopsis.

Supplemental Dataset 1. Verification of the other 111 NCPs.

The other 111 NCPs were verified by comparing fhecsa of the endogenous NCPs

identified by the integrative peptidogenomic pipelto that of synthetic peptides.
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