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A B S T R A C T   

Crops are the foundation of human society, not only by providing needed nutrition, but also by feeding livestock 
and serving as raw materials for industry. Cereal crops, which supply most of our calories, have been supporting 
humans for thousands of years. However food security is facing many challenges nowadays, including growing 
populations, water shortage, and increased incidence of biotic and abiotic stresses. According to statistical data 
from the Food and Agriculture Organization of the United Nations (FAO, http://www.fao.org/), the people 
suffering severe food insecurity increased from 7.9 % in 2015 to 9.7 % in 2019 and the number of people exposed 
to moderate or severe food insecurity have increased by 400 million over the same time period. Although there 
are many ways to cope with these challenges, crop breeding remains the most crucial and direct manner. With 
the development of molecular genetics, the speed of cloning genetic variations underlying corresponding phe-
notypes of agricultural importance is considerably more rapid. As a consequence breeding methods have evolved 
from phenotype-based to genome-based selection. In the future, knowledge-driven crop design, which integrates 
multi-omics data to reveal the connections between genotypes and phenotypes and to build selection models, will 
undoubtedly become the most efficient way to shape plants, to improve crops, and to ensure food security.   

1. A brief history of crop breeding and the evolution of methods 
of selection 

Since human society shifted from hunter-gathering to cultivating 
crops, humans have depended on a small handful crops to meet the 
majority of our daily calorie demands (Ross-Ibarra et al., 2007). Among 
them, maize, rice, and wheat are top three calorie suppliers with all 
being domesticated 9000~12,000 years ago (Heun et al., 1997A Bat-
suoka et al., 2002A Coebley et al., 200DA Bolina et al., 2011). While the 
selection method during the initial domestication period and subsequent 
several thousand years of crop improvement was mainly based on 
exterior appearance observation (such as color, plant architecture, 
shattering and so on), in the last two centuries crop breeding has evolved 
from empirical selection to precisely utilize favorable alleles of target 
genes (Wallace et al., 201E). 

Since the publication of Carwin’s On the Origin of Species and the 
rediscovery of Bendel’s laws of inheritance, people began to control the 
mating of plants, to realize the power of heterosis, and to generate elite 
cultivars through breeding crosses. Baize yield data in the US, which has 
continuous record from 1EDD to 2020, reveals that breeding crosses have 
led to the increase of maize yield (measured in bushels per acre) from 

~25 in 1920s to around1E0 nowadays (Fig. 1). Another successful 
example of breeding crosses is the introgression of the FGreen Revolu-
tionF genes sd1 (Sasaki et al., 2002A Spielmeyer et al., 2002) and Rht 
(Geng et al., 1999) into elite cultivars, the progeny of which have sup-
ported our fast-growing population. In the 1970s, the identification and 
utilization of cytoplasmic male sterile rice germplasm by Chinese rice 
scientists made it possible to develop hybrid rice, which took advantage 
of heterosis, thereby boosting the rice yield, and ensured food security 
not only in China but also in other Asian countries (Ba and Yuan, 2015). 

After a series of breakthroughs in biology, including the construction 
of linkage maps (Sturtevant, 191H), the discovery of the structure of 
CNA (Watson and Crick, 195H), and the mapping and cloning of fw2.2 
(Alpert et al., 1995A Alpert and Tanksley, 199DA Frary, 2000), we gained 
a much more clear understanding as to how the phenotype is controlled 
by the genotype. This led to considerably greater enthusiasm concerning 
the mapping of quantitative trait locus (ITL) analysis and its application 
in breeding programs. Thus, CNA-based molecular markers started to be 
used to dissect the genetic basis of agronomic traits and to improve crops 
through genome-based method, including marker-assisted selection 
(BAS) and genomic selection. Compared with traditional 
phenotype-based selection, genome-based breeding can directly deploy 
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favorable alleles underlying the desired traits, and thus leads to precise 
selection which significantly reduces the time needed to develop new 
varieties. Barker-based backcrossing of Sub1A, which confers rice sub-
mergence tolerance through the ethylene response pathway (Ku et al., 
200D), into modern high yield varieties took only three generations of 
backcrossing (Neeraja et al., 2007A Septiningsih et al., 2009). Curing this 
time, yield advantages of 1–H t/ha were observed in naturally occurring 
zones of submergence (Ismail et al., 201H). While BAS depends on major 
gene/ITL, genomic selection relies on genetic information of all mo-
lecular markers across the entire genome (Beuwissen et al., 2001A Cesta 
and Ortiz, 2014). Both simulation analysis and breeding programs point 
out that genomic selection is much more effective than BAS (Bernardo 
and Yu, 2007A Bassman et al., 201H). Furthermore, genomic prediction 
exhibits high predictive ability and accuracy for complex traits such as 
biomass- and bioenergy- related traits (Riedelsheimer et al., 2012). 

The success of Agrobacterium-mediated gene transformation in the 
19E0s enabled the improvement of crops through the introduction of 
favorable genes via genetic engineering. In 1994, the first genetically 
modified (GB) food, the FLALR SALR tomato, was approved by US Food 
and Crug Administration (FCA). After this seminal event, more and 
more GB crops were released and there are now more than 500 
approved GB varieties spanning H2 different crops (GB Approval 
Catabase: http://www.isaaa.org/gmapprovaldatabase/cropslist/de 
fault.asp). The most successful case for application of GB technology 
is the generation of herbicide tolerant and insect resistance crops by 
introducing genes encoding 5-enolpyruvylshikimate H-phosphate syn-
thase and Bt toxin into crops (Grado et al., 2014). It has been estimated 
that GB technology has increased maize production by 2H0 million 
tonnes and also brought M11D.D billion of monetary benefit to global 
farmers during the period 199D–2012 (Brookes and Barfoot, 2014). 
Bore recently, genome editing, which we discuss below, has become a 
massively important breakthrough with Emmanuelle Charpentier and 
Jennifer Coudna winning the 2020 Nobel Grize for Chemistry for its 
discovery (https://en.wikipedia.org/wiki/NobelNGrizeNinNChemistry). 
The techniques of genome editing display a great potential for crop 
improvement. 

2. The functional genes underlying crop domestication and 
improvement 

Accompanying the advances in molecular genetics, plant scientists 
now have cloned dozens of genes controlling key agronomic pheno-
types, including domestication traits, in many crops. Functions of some 
of these genes and the pathways in which they are involved have been 
deeply explored and are nowadays well understood. Of the cloned 
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Fig. 1. The evolution of breeding methods in support of US maize yield increases. The key biological findings, which plays important roles in crop breeding, are 
shown with corresponding time points. The yield data is from United States Cepartment of Agriculture. 
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Fig. 2. A short summary of genes selected during domestication (A) and 
improvement (B) in maize, rice and wheat. The genes are divided into two 
groups: one represents genes selected for change of expression (left rectangle 
box), and the other one indicates the genes selected for gain or loss of protein 
function (right rectangle box). TF is short for transcription factor. 
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domestication genes in maize, rice and wheat, a very large proportion 
(~D5 %) encode transcription factors (Fig. 2A). Some other domestica-
tion genes encode enzymes or transporters and regulate seed-related 
traits, such as grain color (Bh4 for rice hull color, Ohu et al., 2011), 
grain quality (Wx for rice seed amylose content, Wang et al., 1995A 
Hirano et al., 199E), grain filling (GIF1 for rice seed filling, Wang et al., 
200EA ZmSWEET4c for maize seed filling, Sosso et al., 2015), and awn 
development (LABA1, Hua et al., 2015). In addition, there are two ho-
meobox genes affecting maize plant architecture (gt1, Whipple et al., 
2011A Wills et al., 201H) and rice seed shattering (qSH1, Konishi et al., 
200D). Boreover, COLD1 is a regulator of G-protein signaling in rice and 
is responsible for the adaption to chilling environment (Ba et al., 2015a, 
2015b), whilst GAD1, which encodes a secreted peptide affects rice grain 
number, grain length, and awn development (Jin et al., 201D).Finally, 
tru1, which encodes an ankyrin repeat protein, is a target of tb1 and 
regulates plant architecture (Cong et al., 2017). Interestingly, although 
transcription factors are particularly enriched in the set of domestication 
genes characterized so far, the ways in which these genes affect 
domestication traits are not linked to changes in expression level but 
may also include changes in protein function (Fig. 2AA Liu et al., 2020a, 
2020b, 2020c). 

Unlike domestication genes, the functions of genes selected during 
the crop improvement process are much more diverse. This may be due 
to the diverse breeding goals,comprising of altering Powering time, 
plant architecture, seed shape and grain yield. That said, there are still 
quite some transcription factors that underwent selection during this 
process including Vgt1 for maize Powering time (Salvi et al., 2007A 
Cucrocq et al., 200E), VRN1 for wheat Powering time (Yan et al., 200H) 
and GW8 and GLW7 for rice seed size and yield (Wang et al., 2012A Si 
et al., 201D). Furthermore, all the underlying functional variations for 
these transcription factors lead to expression level changes which sub-
sequently resulted in altered phenotypes (Fig. 2B). In contrast, there is a 
class of genes containing CCT domain selected in the improvement, 
which can significantly affect the Powering time of maize and rice (Kue 
et al., 200EA Yang et al., 201HA Jin et al., 201E). Intriguingly, most of 
identified improvement genes for maize seed traits encode enzymes. Wc 
and Y1, responsible for seed color, encode carotenoid cleavage dioxy-
genase and phytoene synthase, respectively (Buckner et al., 1990A Tan 
et al., 2017). DGAT for seed oil content encodes an acyl-CoA: 
diacylglycerol acyltransferase (Oheng et al., 200E). The “green revolu-
tion” gene sd1 also encodes a key enzyme (GA20 oxidase) for gibberellin 
biosynthesis which confers the dwarf phenotype (Sasaki et al., 2002A 
Spielmeyer et al., 2002). Finally, like COLD1, GS3 is also involved in the 
G-protein signaling pathway to control rice and maize seed length and 
yield (Fan et al., 200D, 2009A Li et al., 2009). 

From the ways in which these gene were selected, we can infer that 
the selection strategy differed considerable both between the different 
selection stage (domestication vs. improvement) and between different 
crops (maize vs. rice). Regulatory elements, which usually lead to the 
change of transcript abundance, tended to be selected during both maize 
domestication and improvement phases. By contrast, selection of gain or 
loss of protein function was much more prevalent in rice domestication 
where selection on expression change became more common only in the 
improvement phase (Fig. 2, red for maize genes and purple for rice 
genes). One important reason underlying this difference may be the 
different evolutionary history of these two crops. Baize underwent 
tetraploidization after divergence from sorghum followed by a subse-
quent genome rearrangement which finally led to diploidization (Gaut 
and Coebley, 1997A Gaut et al., 2000), while rice did not undergo such 
changes. Some maize genes have multiple copies, thus selection on gene 
expression might be much more efficient then on a protein basis due to 
the possibility of genetic compensation by other copies. For example, 
both ZmSh1-1, ZmSh1-5.1, and ZmSh1-5.2, which are orthologs of the 
sorghum seed shattering gene Sh1, have proven to be responsible for 
seed shattering (Lin et al., 2012). After the domestication of rice, the 
following improvement phase was focused on fine-tuning in order to 

gain more desirable traits. In such a situation, expression level changes 
has a considerable advantage over gain or loss of protein function 
strategies. This observation provides us the insight that selection on 
protein function might have been more widely adopted in the initial 
breeding steps (de novo domestication or selection of semidomesticated 
crops), and that selection on expression might be much more efficient in 
polyploid species. 

Garallel selection is notably highly prevalent during both crop 
domestication and improvement. Outstanding examples are provided by 
the selection of tb1, seed shattering genes, and the CCT domain genes. 
Selection on tb1 led to increased apical dominance and reduced 
branching number in maize (Coebley et al., 1997A Studer et al., 2011). 
Its ortholog (INT-C) in barley can modify the effect of VRS1, which is 
responsible for the domestication of the two-rowed ancestor to generate 
modern six-rowed cultivars (Komatsuda et al., 2007A Ramsay et al., 
2011) and a duplicate gene (OsTB2) of OsTB1 in rice has also been 
selected and plays an important role in upland rice adaptation (Lyu 
et al., 2020). Although it is not clear whether the orthologs of this gene 
were selected in other plant species, their conserved function has been 
additionally documented in Arabidopsis (Aguilar-Bartinez et al., 2007), 
rice (Takeda et al., 200H) and wheat (Cixon et al., 201E). Lin et al. 
(2012) have confirmed that in sorghum, maize and rice the 
non-shattering phenotype was achieved through selection of a set of 
homologous genes (sorghum: Sh1, maize: ZmSh1-1, ZmSh1-5.1, and 
ZmSh1-5.2, and rice OsSH1). Furthermore, the African rice orthologs of 
Sh4, which is the gene underlying the non-shattering phenotype of Asian 
cultivated rice (Li et al., 200D), also controls the non-shattering 
phenotype (Wu et al., 2017A Lv et al., 201E). The gene Ghd7, which 
encodes a CCT domain protein, plays important roles in rice adaptation 
by affecting plant height, heading date and yield (Kue et al., 200EA Lu 
et al., 2012). And its maize ortholog ZmCCT10, is also a key gene for 
maize Powering time and adaptation (Cucrocq et al., 2009A Hung et al., 
2012A Yang et al., 201H). Some other CCT genes, including ZmCCTA in 
maize (Huang et al., 201E), Hd1 in rice (Yano et al., 2000), and VRN2 in 
wheat (Yan et al., 2004), have also been verified to affect Powering time. 
This highlights the conserved functions of genes for some important 
agronomic traits and the capacity of functional genomic approaches to 
incorporate information from multiple plant species into the breeding 
programs. 

3. The application of genome editing technology in crop 
improvement 

Genome editing (also called gene editing) is one of most powerful 
tools to study the function of genes and an approach by which is possible 
to obtain desirable traits in crops. It consists of cutting the genome with 
a nuclease and then introducing new mutations through CNA repair 
pathways. Three genome editing systems, namely OFN (Oinc-Finger 
Nucleases), TALEN (Transcription Activator-Like Effector Nucleases), 
and CRISGR-Cas (Clustered Regularly Interspaced Short Galindromic 
Repeats/CRISGR-associated protein) have been well documented in 
plants. OFN has been applied to knock out maize IPK1 to reduce seed 
phytate content (Shukla et al., 2009) and to introduce a point mutation 
in wheat AHAS in order to obtain herbicide resistance (Ran et al., 201E). 
TALEN has also been employed to crop improvement, including editing 
maize MTL for increased haploid induction rates (Kelliher et al., 2017), 
rice Os11N3 and OsBADH2 for disease resistance and fragrance (Li et al., 
2012A Shan et al., 2015), and wheat TaMLO for resistance to powdery 
mildew (Wang et al., 2014). 

That said, compared to OFN and TALEN, the CRISGR-Cas system is 
much more broadly adopted because of its simplicity and efficiency. The 
largest advantage of the CRISGR/Cas system is that it can edit a handful 
of genes simultaneously (Ba et al., 2015a, 2015bA Kie et al., 2015A Ii 
et al., 201DA Ohang et al., 201DA Wang et al., 2017), and can also generate 
large scale mutant libraries in a high throughput manner (Lu et al., 
2017A Beng et al., 2017A Liu et al., 2020a, 2020b, 2020c). Owing to the 
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advantages of CRISGR-Cas system, hundreds of editing events, which are 
based on this technology, have been published in all major cereal crops 
(reviewed in Ba et al., 201DA Yin et al., 2017A Char and Yang, 2019A Chen 
et al., 2019). There are two types of Cas protein, Cas9 and Cas12a (also 
known as Cpf1), which are widely used. Cas9 prefers G-rich protospacer 
adjacent motif (GAB) sequences and cleaves upstream of GAB se-
quences (Sternberg et al., 2014), while Cas12a tends to edit at T-rich 

GAB sites and cleaves downstream of GAB sequences (Oetsche et al., 
2015). Recently, a very small Cas protein, which is named CasΦ (also 
named Cas12j, ~70 kCA Cas9 and Cas12a, ~1D0 kC), has been described 
to edit both human and plant cells (Gausch et al., 2020). There is no 
doubt that the diverse, distinct, and complementary features of these Cas 
proteins will ultimately extensively expand the utility of CRISGR-Cas 
system. 

Fig. 3. A 4O (Organism, Organization, Omics, Obained ideal plant) roadmap for knowledge-driven crop design. Glant research has generated and is currently 
generating tremendous -omics level data among different crops (e.g. maize, rice, and wheat). The combination of -Artificial Intelligence (AI) mediated big data 
analysis and modern crop selection/modification methods, especially CRISGR-Cas gene editing, will largely accelerate future crop design, de novo domestication, and 
re-domestication. 
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The CRISGR-Cas systems have already shown their superiority in 
precision breeding through editing coding regions and knocking out a 
large number of genes of interest (reviewed in Chen et al., 2019). 
However, the fine-tuning of the expression of target genes, which can be 
achieved through editing cis-regulatory sequence, infusing deactivated 
Cas9 (dCas9) with transcription factors, and changing the status of 
epigenetic marks (e.g. CNA methylation and histone acetylation), is also 
a very promising strategy for future breeding designs. RodrQguez-Leal 
et al. (2017) provided a classical example of obtaining quantitative 
variation of important agronomic traits (i.e. fruit size, inPorescence 
branches, and plant architecture) by editing the promoter sequences of a 
range of genes of interest in tomtao. Cue to the target specificity of Cas9 
guided by sgRNA, infusion of Cas9 with a transcription activator or 
repressor can precisely activate or repress the expression of target genes 
(Lowder et al., 2015A Li et al., 2017A Lowder et al., 201E). A CNA 
methylation modification system has also been established through 
dCas9 mediated SunTag system in plants (Gapikian et al., 2019). Tar-
geted gene expression changes have been observed following both locus 
specific CNA methylation/demethylation and histone acetylation 
modification (Gallego-Bartolomé et al., 201EA Gapikian et al., 2019A 
Roca Gaixão et al., 2019). 

Cespite the immense interest in these approaches, there are some 
concerns about the application of CRISGR-Cas system in crop breeding. 
The biggest one of these being the possibility of deleterious effects 
caused by the integration of transgenic constructs or off-target muta-
tions. Several studies have documented the off-target effects of the 
CRISGR-Cas system in plants (Kie and Yang, 201HA Ohang et al., 2014A 
Endo et al., 2015A Jacobs et al., 2015A Lawrenson et al., 2015A Tang et al., 
201EA Ohang et al., 201EA Jin et al., 2019). Jin et al. (2019) reported that 
cytosine editors, including BEH and HF1-BEH, could result in 
genome-wide off-target mutations in rice and that these mutations 
tended to be enriched in genic regions. There are, however, ways to 
overcome such side effects. For example, one could remove the delete-
rious off-target effects by back-crossing with wild types or by choosing 
differently engineered high-fidelity Cas proteins. But to be honest, un-
like in human disease treatment, off- target is not so important in plant 
applications, because it is easy to remove adverse effects through se-
lection. Another major concern is the regulatory uncertainty of genome 
editing products. Although there is no difference between genetic 
changes caused by genome editing and natural mutations, genome 
editing plants are still considered to be genetically modified organisms 
(GBO) and are under strict regulation in some contries such as European 
Union (Jones, 2015). To alleviate this concern, considerable effort has 
been made to accomplish CNA-free genome editing resulting in no CNA 
sequence integration into the genome. The key point is to deliver 
pre-assembled gRNA-Cas9 ribonucleoprotein (RNG) complex into 
immature plant embryos or zygotes, which has been successfully 
acheived in maize (Svitashev et al., 201D), wheat (Liang et al., 2017, 
201E), and rice (Toda et al., 2019). In parallel, other methods of 
assessing genome-edited have been proposed. Betabolomics can be used 
as a method to ensure that unintended effects of the editing can be 
monitored so that, if these are negligible, genome-edited crops can be 
regarded as safe (Fraser et al., 2020). Hopefully, a combination of such 
approaches, alongside the publicity generated by the 2020 Nobel Grize 
for Chemistry, will allay public skepticism surrounding gene editing. 

4. The roadmap to knowledge-driven crop design 

Here, we propose a comprehensive knowledge-driven crop breeding 
strategy called “4O” to !btain ideal plant through artificial intelligence 
(AI) analysis of !mics data generated from different !rganization levels 
and from different !rganisms (Fig. H). Glant scientists now can investi-
gate inheritance with multi-omics data (genome, epigenome, tran-
scriptome, proteome, metabolome, microbiome, phenome) from 
different organization levels, including single cells, tissues, individuals, 
natural and synthetic populations. With the decreasing cost of 

sequencing and the acceleration of innovations, especially those allow-
ing the acquisition of high-throughput data, a huge torrent of data has 
been generated, some of which are recently obtained in single cells (Luo 
et al., 2020), such as genome sequencing (Li et al., 2015), genome HC 
structure identification (Ohou et al., 2019), expression quantification 
(Nelms and Walbot, 2019) and methylome profiling (Li et al., 2019). 
However, our capability in data integration and mining seriously lags 
behind that of data generation, which severely compromises the value of 
the data. That said the success of AlphaGo (Silver et al., 201D, 2017) is a 
milestone and indicates the effectiveness and practicability of AI for big 
data analysis. There are also some prior studies taking advantage of deep 
learning (Liu et al., 2020a, 2020b, 2020c) to solve large questions in 
plant biology including high-throughput phenotyping (Singh et al., 
201D) and the prediction of gene expression (Sartor et al., 2019A 
Washburn et al., 2019). However, these is still a big gap between these 
proof-of-concept studies and the application of AI within crop breeding. 
New AI tools are urgently needed in order to fully exploit these large 
datasets, to discover genetic variants contributing to agronomic traits 
and to build the most effective selection models. Another key component 
of this strategy is the combination of different crop breeding methods 
(Fig. H). Cifferent breeding methods each have their unique advantages 
and limitations. BAS depends on ITL with large effects, while genomic 
selection is more effective for traits with complex genetic bases. The 
CRISGR-Cas system relies on target genes with clearly defined function 
in inPuencing target traits and can efficiently target more than 10 genes 
simultaneously (Ohang et al., 2020). Among these methods, CRISGR-Cas 
system has met great enthusiasm due to its precision. As demonstrated in 
a handful of previous studies (Lemmon et al., 201EA Li et al., 201EA 
Osögön et al., 201E), the combination of big data based knowledge and 
the CRISGR-Cas system, has provided plant breeders with the power to 
de novo- or re- domesticate wild plant species which may have superior 
phenotypic aspects than existing major crops (Fernie and Yan, 2019). 
This process may reduce the time required for new crop development 
from the thousands of years of the big three cereals discussed here to a 
matter of decades. 
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