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SUMMARY

Maize (Zea mays mays) oil is a rich source of polyunsaturated fatty acids (FAs) and energy, making it a valu-

able resource for human food, animal feed, and bio-energy. Although this trait has been studied via conven-

tional genome-wide association study (GWAS), the single nucleotide polymorphism (SNP)-trait associations

generated by GWAS may miss the underlying associations when traits are based on many genes, each with

small effects that can be overshadowed by genetic background and environmental variation. Detecting

these SNPs statistically is also limited by the levels set for false discovery rate. A complementary pathways

analysis that emphasizes the cumulative aspects of SNP-trait associations, rather than just the significance

of single SNPs, was performed to understand the balance of lipid metabolism, conversion, and catabolism

in this study. This pathway analysis indicated that acyl-lipid pathways, including biosynthesis of wax esters,

sphingolipids, phospholipids and flavonoids, along with FA and triacylglycerol (TAG) biosynthesis, were

important for increasing oil and FA content. The allelic variation found among the genes involved in many

degradation pathways, and many biosynthesis pathways leading from FAs and carbon partitioning path-

ways, was critical for determining final FA content, changing FA ratios and, ultimately, to final oil content.

The pathways and pathway networks identified in this study, and especially the acyl-lipid associated path-

ways identified beyond what had been found with GWAS alone, provide a real opportunity to precisely and

efficiently manipulate high-oil maize genetic improvement.
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INTRODUCTION

Oil content and composition are important determinants of

maize (Zea mays mays) kernel quality (Watson, 1987).

Maize oil is rich in high-energy lipids in the form of triacyl-

glycerols (TAGs), which include unsaturated fatty acids

(FAs, e.g. oleic acid and linoleic acid), making maize oil a

valuable resource for human food, animal feed, and bio-

energy. Different ratios of each FA may be more beneficial

to different end uses. For instance, palm oil is well known

for its high level of saturated FA and has many advantages

for the food industry thanks to its high oxidative stability

and high melting point, making it a good alternative to

trans-fats. Oils with higher oleic-acid content are healthier

because oleic acid can reduce blood pressure,

inflammation, and oxidative damage, and may help pre-

vent cancer. Therefore, understanding the genetic architec-

ture of lipid metabolism in maize enables work on this key

target for maize breeding and biotechnology-assisted

improvement. Maize kernel oil concentration and FA com-

position are highly heritable traits but are quantitative in

nature and controlled by multiple genes.

Long-term artificial selection in high-oil maize popula-

tions has provided unique genetic resources for dissection

of the genetic architecture of oil biosynthesis in maize ker-

nels (Dudley and Lambert, 2004; Lambert et al., 2004; Song

and Chen, 2004). In 1896, C. G. Hopkins started a selection

experiment on the percent oil and protein of maize kernels
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using the open-pollinated cultivar ‘Burr’s White’ at the

University of Illinois (Dudley and Lambert, 2004). He ana-

lyzed 163 ears for oil and protein content and selected the

24 ears highest in protein and another 24 for high oil, and

the 12 ears lowest in protein and another 12 for low oil.

Therefore, he initiated the Illinois High Oil (IHO), Illinois

Low Oil (ILO), Illinois High Protein (IHP), and Illinois Low

Protein (ILP) strains. After 100 generations of continued

artificial selection, the kernel oil concentration of IHO

increased from the initial 4.69 to 20.37%; in the ILO, after

85 generations it had decreased from 4.69 to 0.05% (below

which germination was compromised; Dudley and Lam-

bert, 2004). It is remarkable that 100 generations of selec-

tion had not eliminated the genetic variability in this

population, and an upper limit has not been reached in the

IHO (Dudley and Lambert, 2004). This indicates that many

genes, each with a small effect, have been the targets of

continual selection over the course of the experiment, and

may continue to be so for some time to come.

Quantitative trait loci (QTL) for oil concentration and FA

composition in maize have been identified from multiple

studies of high-oil maize lines (Sughrour and Rocheford,

1994; Alrefai et al., 1995; Laurie et al., 2004; Clark et al.,

2006). These studies found several QTL with a range of

small to large effects on different FA composition traits,

many with additive effects. Using a recombinant inbred

line (RIL) population, epistatic effects were found as well,

and a gene under a QTL affecting maize seed oil and oleic-

acid content that encodes an acyl-CoA:diacylglycerol acyl-

transferase (DGAT1-2), which catalyzes the final step of oil

synthesis, was identified by Yang et al. (2010). A pheny-

lalanine insertion in DGAT1-2 increased oil and oleic-acid

content (Zheng et al., 2008). Our previous research com-

bining linkage and association analyses allowed fine map-

ping of a QTL influencing levels of palmitic acid to a 90-kb

region containing a candidate gene, Zea mays fatb

(Zmfatb), which encodes an acyl-acyl carrier protein (ACP)

thioesterase. An 11-bp insertion in the last exon of this

gene decreases palmitic acid content and concentration,

leading to an optimization of the ratio of saturated to

unsaturated FAs, while having no effect on total oil content

(Li et al., 2011). Using near isogenic lines (NIL), Zhang

et al. (2012) fine mapped a major QTL for embryo to endo-

sperm ratio (EER) and kernel oil concentration, and identi-

fied ZmGE2, which encodes a cytochrome p450 protein. A

247-bp transposable element (TE) insertion in the 30-
untranslated region was associated with increased EER

and kernel oil, and was a selection target during long-term

selection for high EER in a high-oil population (Zhang

et al., 2012).

Fine mapping with recombinant inbred lines (RILs) and

map-based cloning are highly accurate, but the process is

time-consuming and challenging. The genomic regions

identified often span very large physical distances

containing many repetitive sequences. Association map-

ping can shorten the research period while simultaneously

analyzing greater allele numbers and greatly improving

mapping resolution, often to the single gene level (Rem-

ington et al., 2001; Yu and Buckler, 2006). Bel�o et al. (2008)

used GWAS to identify loci with major effects on oleic-acid

concentration in maize kernels and, with relatively few

(8590) SNPs, identified Zmfad2 as responsible for the dif-

ferences in the oleic-acid content. Recently, we conducted

a GWAS with 1.03 million SNPs characterized in a panel of

368 maize inbred lines and identified 74 loci significantly

associated with kernel oil concentration and FA composi-

tion, which we subsequently examined by expression QTL

mapping, linkage mapping and coexpression analysis (Li

et al., 2013). Most gene characterizations that have come

from GWAS have discovered that the association is not

actually in the causal gene; identifying the correct gene

can be quite an arduous process.

Metabolic pathway analysis combined with GWAS

focuses on the cumulative effects of many genes grouped

according to their shared biological function. This promis-

ing approach can give clues to the genetic basis of a trait

by finding biological insights missed when focusing on

only one or a few genes that are most significantly associ-

ated (Tang et al., 2015). Although originally developed to

study differences in gene expression data for medically

important diseases (Subramanian et al., 2005), pathway

analysis has also been used with association mapping

data, first in human disease studies (Wang et al., 2007) and

then plants (Tang et al., 2015). In addition, biologically rel-

evant pathways can be used to determine additional candi-

date genes for further study or to interpret large data sets

produced by other high-throughput approaches, including

RNA sequencing, proteomics, and metabolomics. This is

being done in maize, in targeted pathways such as carote-

noid biosynthesis (Owens et al., 2014); in functionally

related networks (Baute et al., 2016; Walley et al., 2016);

and in protein interaction networks (Musungu et al., 2015).

Tang et al. (2015) took the pathway-based approach

using the results of an aflatoxin GWAS study in maize to

jointly consider all genetic sequences associated with afla-

toxin accumulation resistance, regardless of magnitude of

allele effects. GWAS alone identified significant associa-

tions but none led to plausible resistance mechanisms; 17

high ranking pathways representing mechanisms to pre-

vent fungal growth and production of deleterious aflatoxin

were identified via the pathway approach (Tang et al.,

2015). Many of these pathways were consistent with

known resistance mechanisms, primarily centered on the

production of the bioactive plant hormone methyl-jasmo-

nate, known to orchestrate plant responses to several bio-

tic stresses. The interaction of production pathways of

different lipids makes it difficult to find genes that account

for all phenotypic variation of one FA alone. Levels of one
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FA are generally linked to levels of others, as production of

one may start with, and therefore decrease, another

(Li-Beisson et al., 2013). To better understand lipid metabo-

lism in maize and identify key points for genetic or geno-

mic manipulation, this study was performed to elucidate

the biochemical pathways, metabolic networks, and associ-

ated genes that contribute to oil-related traits by account-

ing for linkage disequilibrium and association statistics

among SNPs from a large-scale GWAS study.

RESULTS

GWAS and tagSNPs

SNP-trait associations calculated for oil concentration and

9 FA-related traits were reported in Li et al. (2013) and

Table S1. The GWAS was run with TASSEL on 560 000

SNPs genotyped on each of the 368 inbred maize lines in

this study. In total, 139 SNPs associated at P < 1.8 9 10�6

were identified for oil concentration, for which R2 values

ranged between 6.61 9 10�6 to 0.18 (Li et al., 2013). A

pathway analysis was run using the cumulative association

information from all SNPs in the GWAS, by identifying

tagSNPs and linked genes per linkage block and assigning

them to common metabolic pathways. In total, 259 206

unique tagSNPs were used to locate 25 404 genes, of

which 3106 mapped to the 313 MaizeCyc pathways that

had five or more genes. This information, along with the

number of tagSNPs and genes mapped to the significant

pathways, is shown in Table S2.

Most significant pathways for increasing oil concentration

Three pathways were significantly associated with

increased oil concentration at P < 0.01, and an additional

16 at P < 0.05 (Table 1). These include seven pathways

directly involved in lipid metabolism (Table 1), and some

of these are shown in Figure 1. Linoleate biosynthesis I

(PWY-5995) was the most significant (P = 3.51 9 10�4)

pathway identified in this study. Linoleate is a polyunsatu-

rated FA that accounts for more than 50% of the oil content

in the maize grains of this panel (Li et al., 2013). Most of

the oleoyl-CoA converted from oleoyl-ACP is incorporated

into lipids, forming phosphatidylglycerols (PGs), diglyc-

erides, and phosphatidylcholines (PCs). Further desatura-

tion of the oleoyl groups to linoleoyl groups in the

endoplasmic reticulum (ER) occurs while being incorpo-

rated into lipids (Figure 2). This step is catalyzed by the

enzyme acyl-lipid x-6 desaturase (EC1.14.19.f, or cyto-

chrome b5), encoded by the FAD2 gene, which was also

significantly associated with oil concentration in our previ-

ous GWAS results (Li et al., 2013). This gene was the sec-

ond most important in the calculation of the running

enrichment score (RES) for PWY-5995; all genes in the

pathway can be seen in Figure 2, along with their relative

contribution to oil concentration (genes are sorted and

denoted by the hash marks along the top of the RES

graph). The most important gene in the pathway (accord-

ing to enrichment score), which had long-chain fatty acid-

CoA ligase activity (MaizeCyc v2.1; Monaco et al., 2013),

was not identified in the GWAS by Li et al. (2013).

Another pathway with enrichment scores significant at

the P < 0.05 is the TAG biosynthesis pathway (TRIGLSYN-

PWY, Figure 1 and Table 1). The major lipid in maize

grains reserve is TAG, a glycerol backbone onto which

three FAs are sequentially esterified in higher plants. The

assembly of TAG occurs in the ER by four consecutive

reactions. DGAT, encoding diacylglycerol acyltransferase,

catalyzes the final step of TAG synthesis, which was asso-

ciated with oil concentration in our previous GWAS result

(Li et al., 2013). Over-expression of DGAT increases oil and

oleic-acid concentration by up to 41 and 107% in maize ker-

nels, respectively (Zheng et al., 2008).

Most significant pathways for increasing FA

Pathway analyses were run on associations calculated for

nine FA concentration traits, including the concentration

levels of palmitic (C16:0), stearic (C18:0), oleic (C18:1), lino-

leic (C18:2), and linolenic (C18:3) acids, and the ratios of

palmitic to stearic (C16:0/C18:0), stearic to oleic (C18:0/

C18:1), oleic to linoleic (C18:1/C18:2), and linoleic to linole-

nic (C18:2/C18:3). Of the 313 MaizeCyc pathways analyzed,

28 that increased the concentration of one or more FA

were identified, and had enrichment scores that were sig-

nificant at P < 0.01 (Table 2). Of these, 10 are directly

involved in lipid metabolism, including known biosynthe-

sis pathways for palmitate, stearate, oleate, and linoleate

(Li-Beisson et al., 2010). An extended list for pathways with

enrichment scores significant at P < 0.05 is included in

Table S3. In addition to the direct biosynthesis pathways,

others that are known to be involved in lipid metabolism

were identified (Figure 1). Pathway PWY-5147, oleate

biosynthesis I, identified at P < 0.01 in two traits, is central

to lipid metabolism and has two sequential reactions that

begin with stearoyl-ACP. Based on the ranks of the effect

values, 15 of the 19 genes in this pathway contributed to

the enrichment score (Table S4). Two of these genes

(GRMZM5G829544 and GRMZM2G079308) had also been

identified via GWAS (Li et al., 2013). The key enzyme in

this pathway is stearoyl-ACP 9-desaturase (SAD), which

introduces the first double bond at the delta (9) position of

stearoyl-ACP to produce oleoyl-ACP. This enzyme is

responsible for the conversion of saturated FAs to unsatu-

rated FAs in the synthesis of vegetable oils (Dyer and Mul-

len, 2001; Han et al., 2017). This example, and all pathway

results, illustrates the effectiveness of the pathway analysis

for interpreting GWAS results beyond what is seen simply

with single point association data (Tables S1 and S4).

The identified pathways often influenced more than one

of the FAs, which was expected because FAs are frequently
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modified or converted from one into another (Tables 2 and

S3). The correlation between the levels of all FAs is

strongly significant (P < 0.001, Li et al., 2013), and the

same pathways are frequently identified when running the

analysis on different FAs at P < 0.05 (Tables 2 and S3). In

addition, single pathways often affect the levels of multiple

FAs. For example, the coenzyme A biosynthesis pathway

(COA-PWY-1) had a high enrichment score for C16:0 and

C18:2; FA elongation – saturated (FASYN-ELONG-PWY)

had a high enrichment score for C16:0 and C18:0; and the

acyl-ACP thioesterase pathway (PWY-5142) had a high

enrichment score for C16:0, C18:0 and C18:1 (Figure 1;

Tables 2 and S3).

Coenzyme A (CoA) functions as an acyl carrier and car-

bonyl-activating group in numerous central biochemical

transformations, including the tricarboxylic acid cycle

(TCA, also known as the citric acid cycle (CAC) or Krebs

cycle) and FA metabolism (Rubio et al., 2006). The biosyn-

thesis of CoA from (R)-pantothenate (Figure 3) is an essen-

tial universal pathway in both prokaryotes and eukaryotes.

In the present analysis, eight genes in the CoA biosynthe-

sis pathway (COA-PWY-1) contributed the most to the

enrichment score. The steps in the pathway mediated by

the products of these genes are indicated in Figure 3 as

well. Therefore, it can be seen where the allelic variation in

this panel was critical in the biosynthesis of CoA for deter-

mining the level of C16:0 and C18:2 in maize kernels. The

FA elongation pathway (FASYN-ELONG-PWY) includes the

reactions that constitute one turn of a cycle that lengthens

the chain of an acyl-ACP molecule by two carbons. The

products of this pathway are saturated FAs such as C12:0,

C14:0, C16:0 and C18:0 (Li-Beisson et al., 2010), and the

importance of this pathway was confirmed by our results

(Table S3). None of the genes in these two pathways was

identified in the GWAS results of Li et al. (2013). In this

study’s analysis, however, the cumulative effect of many

genes in the pathway allowed it to be identified as associ-

ated with multiple measured traits. The pathway for

acyl-ACP thioesterase (PWY-5142) is encoded by nine

genes, and releases FA from acyl-ACPs. Two of these nine

genes, GRMZM2G079308 (FATB.a) and GRMZM5G829544

(FATB.b), contributed to increasing the RES. These two

genes were identified in previous GWAS results (Li et al.,

2013; Table S1). The main products of acyl-ACP thioester-

ase B (FATB) are C16:0 and to a lesser extent C18:0 in all

plants (Salas and Ohlrogge, 2002; Li-Beisson et al., 2013).

In addition to FA biosynthesis pathways, acyl-lipid path-

ways were also identified in this analysis of increased FA

traits. These included wax esters biosynthesis II (PWY-

5885) for C18:1; sphingolipid biosynthesis (PWY-5129) and

phospholipid biosynthesis II (PHOSLIPSYN2-PWY) for

C18:2; flavonoid biosynthesis (PWY1F-FLAVSYN) for C18:2

and C18:3; and the superpathway of phosphatidylcholine

biosynthesis (PWY4FS-5) for C18:3. The wax esters biosyn-

thesis pathway (PWY-5885) is carried out by several unre-

lated acyltransferases, including wax ester synthase (WS)/

DGAT. Wax esters biosynthesis uses very long-chain fatty

acids (VLCFA) (elongated from small to medium length

FAs), which are esterified to a short chain alcohol (King

et al., 2007). Flavonoids are secondary metabolites formed

Table 1 Pathways associated with increased oil concentration and with enrichment scores that were significant at P < 0.05. Pathway identi-
fier (ID) and name are drawn from the MaizeCyc database (https://www.maizegdb.org/metabolic_pathways/), and P and FDR were calculated
in this study

MaizeCyc ID Pathway name P FDR

PWY-5995 Linoleate biosynthesis I (plants) 0.00035 0.10553
PWY-5121 Superpathway of geranylgeranyldiphosphate biosynthesis II (via MEP) 0.00273 0.40943
PWY-5143 Fatty acid activation 0.00684 0.61996
PWY-5912 20-Deoxymugineic acid phytosiderophore biosynthesis 0.01065 0.61996
PWY-5687 Pyrimidine ribonucleotides interconversion 0.01489 0.61996
NONMEVIPP-PWY Methylerythritol phosphate pathway 0.01522 0.61996
PWY-5123 Trans, trans-farnesyl diphosphate biosynthesis 0.01543 0.61996
PWY-4081 Glutathione redox reactions I 0.01879 0.61996
PWY0-163 Salvage pathways of pyrimidine ribonucleotides 0.02114 0.61996
PWY-5366 Palmitoleate biosynthesis II 0.02588 0.61996
PWY-5142 Acyl-ACP thioesterase pathway 0.02588 0.61996
UDPNACETYLGALSYN-PWY UDP-N-acetyl-D-glucosamine biosynthesis II 0.02665 0.61996
TRIGLSYN-PWY Triacylglycerol biosynthesis 0.02689 0.61996
PWY2OL-4 Linalool biosynthesis 0.03074 0.61996
SO4ASSIM-PWY Sulfate reduction I (assimilatory) 0.03532 0.61996
PWY-5340 Sulfate activation for sulfonation 0.03532 0.61996
COA-PWY-1 Coenzyme A biosynthesis 0.04194 0.61996
PWY-5885 Wax esters biosynthesis II 0.04270 0.61996
PWY-5278 Sulfite oxidation III 0.04559 0.61996
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from phenylpropanoid and FA derivatives and have an

important function, acting as UV-B protectors, signal mole-

cules in legume�rhizobium bacteria interactions, and in

response to biotic stress (Peters et al., 1986; Ryan et al.,

2001). Pathways involved in hormone synthesis, amino

acid degradation, and energy production also contributed

to the increase in FA levels in this analysis (Figure 1;

Tables 2 and S3).

Most significant pathways for decreasing oil concentration

and FA

The pathways associated with a decrease in oil and FA

concentration can be found in Table S5. Among the 86 sig-

nificantly (P < 0.05) associated pathways, 11 were related

to lipid metabolism. These were mainly lipid degradation

pathways, and 23 were related to degradation of primary

metabolites in general (Figure 4; Table S5). For instance,

glycerol degradation IV (PWY-4261) was the most signifi-

cantly enriched in the analysis of C18:0 (P < 0.01) and

C18:1 (P < 0.05, Figure 1; Table S5). During seed germina-

tion, TAG is broken down to FAs and glycerol, which are

converted to sucrose via the glyoxylate cycle to support

seedling growth (Li-Beisson et al., 2013). In the glycerol

degradation pathway (PWY-4261), glycerol is phosphory-

lated to glycerol-3-phosphate by glycerol kinase, and then

converted to dihydroxyacetone phosphate by glycerol-3-

phosphate dehydrogenase, acs7. The product of glycerol

degradation, dihydroxyacetone phosphate, can be con-

verted to sugars via gluconeogenesis (Friso et al., 2010).

Therefore, there may be less glycerol-3-phosphate avail-

able for TAG biosynthesis and subsequent production of

oil. The acs7 gene, as well as 12 others, together increased

Figure 1. The simplified lipid metabolic pathway in maize. The reactions corresponding to significant pathways detected by pathway analysis are in purple and

blue dotted line boxes. The colored boxes also denote pathways that were missed (purple) and detected (blue) by GWAS alone (Li et al., 2013). Plastid and

endoplasmic reticulum (ER) are shaded with green and purple, respectively. PDHC, pyruvate dehydrogenase complex; FAS, fatty acid synthase; KAS, ketoacyl-

ACP synthase; SAD, stearoyl-ACP desaturase; ACP, acyl carrier protein; FAT, acyl-ACP thioesterase; FFA, free fatty acid; FAE, fatty acid elongase. KCS, ketoacyl-

CoA synthase; KCR, ketoacyl-CoA reductase; HACD, hydroxyacyl-CoA dehydrase; ECR, enoyl-CoA reductase; VLCFA, very long-chain fatty acid; G3P, glycerol 3-

phosphate; GPAT, glycerol 3-phosphate acyltransferase; LPA, lysophosphatidic acid; PA, phosphatidic acid; LPAAT, lysophosphatidic acid acyltransferase; DAG,

diacylglycerol; PP, PA phosphatase; TAG, triacylglycerol; DGAT, acyl-CoA: diacylglycerol acyltransferase; MAG, monoacylglycerol; FAD2, oleate desaturase; CK,

choline kinase; CCT, choline-phosphate cytidylyltransferase; DAG-CPT, diacylglycerol cholinephosphotransferase; PC, phosphatidylcholine; CDP-DAG, CDP-dia-

cylglycerol; CDP-DAGS, CDP-DAG synthase; PGPS, phosphatidylglycerophosphate synthase; PGP, phosphatidylglycerol phosphate; PGPP, PGP phosphatase;

PG, phosphatidylglycerol; CL, cardiolipin; CLS, cardiolipin synthase. Pathway names: PWY-5173, superpathway of acetyl-CoA biosynthesis; PWY-5971, palmitate

biosynthesis II (bacteria and plants); PWY-5156, superpathway of fatty acid biosynthesis II (plant); PWY-5989, stearate biosynthesis II (plants); PWY-5147, oleate

biosynthesis I (plants); PWY-5142, acyl-ACP thioesterase pathway; COA-PWY-1, coenzyme A biosynthesis; PWY-4261, glycerol degradation IV; PWY-5080, very

long-chain fatty acid biosynthesis; PWY-5143, fatty acid activation; PWY-5885, wax esters biosynthesis II; PWY-5129, sphingolipid biosynthesis (plants); TRIGL-

SYN-PWY, triacylglycerol biosynthesis; FASYN-ELONG-PWY, fatty acid elongation – saturated; PWY0-381, glycerol degradation I; PWY-5995, linoleate biosynthe-

sis I (plants); PWY4FS-5, superpathway of phosphatidylcholine biosynthesis; PWY-5269, cardiolipin biosynthesis II.
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the enrichment score of PWY-4261; these genes were not

identified in the GWAS results of Li et al. (2013).

Another pathway reducing lipids is heptadecane biosyn-

thesis (PWY-6622), which was found to be enriched in the

analysis of C16:0 and C18:0 (P < 0.05, Table S5). The alka-

nes are produced from FAs in three steps – activation of

the FA by an ACP, reduction of the activated FA to an alde-

hyde, and decarbonylation of the aldehyde by gl1, result-

ing in an alkane that is one carbon shorter than the

original FAs. Therefore, the increase in metabolites derived

from FAs would decrease the level of FAs, and this was

shown in our results. The list of pathways that decrease oil

and FA concentration was dominated by carbon partition-

ing pathways, such as amino acid and glucose related

pathways, which made up over 50% of total pathways with

decreasing effect values (Figure 4; Table S5). Examples of

significant substrate consumption pathways include pyru-

vate fermentation to ethanol (PWY-5486) and gluconeogen-

esis I (GLUCONEO-PWY) (Table S5). Gluconeogenesis is

the generation of glucose from non-sugar carbon sub-

strates such as pyruvate and glycerol. The process is

essentially the reversal of the glycolysis pathway. In addi-

tion to the important role played by carbon partitioning in

lipid metabolism, pathways involved in hormone

production, cell growth, or energy production decrease

lipid levels as well (Figure 4).

DISCUSSION

The candidate genes identified by previous GWAS of oil-

related traits were mostly involved in FA and TAG biosyn-

thesis (Li et al., 2013; Table S1). Following biosynthesis, FAs

can then be subjected to elongation, desaturation and even-

tual export from the plastid, ultimately giving rise to distinct

acyl-lipid species, including phosphatidylinositols (PIs),

phosphatidylcholines (PCs), phosphatidylethanolamines

(PEs), phosphatidylglycerols (PGs), monogalactosyldiacyl-

glycerols (MGDGs), digalactosyldiacylglycerols (DGDGs),

sulfoquinovosyldiacylglycerols (SQDGs) (Li-Beisson et al.,

2013). However, the large number of intermediates and the

interaction between lipid pathways render the characteriza-

tion of lipid metabolism quite challenging (De Abreu et al.,

2018). Pathway analysis of oil-related traits provided a com-

plementary method to detect the mechanisms of lipid meta-

bolism in maize kernels and emphasized multiple aspects of

SNP-trait associations rather than just significance, as in

conventional GWAS.

Our pathway analysis results indicate that acyl-lipid

pathways, including wax esters biosynthesis, sphingolipid

Figure 2. Graphs of pathway reactions and the run-

ning enrichment score (RES) calculation for PWY-

5995, linoleate biosynthesis I. Genes were ranked in

descending order (left to right) by their effect scores

and paired using the yellow dotted line with genes

in the pathway reaction, denoted by hash marks at

the top of the RES graph. The pathway enrichment

score that coincided with the maximum running

enrichment score is marked by the black vertical

dashed line.
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biosynthesis, phospholipid biosynthesis and flavonoid

biosynthesis, were as important as FA and TAG biosynthe-

sis pathways for increasing oil and FA concentration

(Tables 1, S1 and S3), and for changing FA ratios (Tables

S6). Due to the nature of statistical tests, it is possible that

one or more of the pathways identified by this analysis

was a false positive result, and not actually involved in oil

biosynthesis. However, resampling with replacement and

false discovery rate protection were both done to reduce

the incidence of false positives. It is therefore likely that

detected pathways which are not known lipid biosynthesis

pathways do contribute to overall levels of lipids in maize

kernels, in a less direct manner. Further experiments with

molecular biology tools and/or CRISPR/Cas9 would be

required to provide validation of involvement of all path-

ways in oil biosynthesis.

Lipid metabolism in the maize kernel

By combining pathway analysis results with knowledge

about lipid metabolism in the model species Arabidopsis

(Li-Beisson et al., 2013), we can propose further

modifications that can be used to achieve optimum levels

of FAs and lipids in maize for different end uses. The acyl-

lipid metabolic pathways in maize (Figure 1) and Arabidop-

sis generate an acetyl-CoA pool from pyruvate through the

action of the plastidial pyruvate dehydrogenase complex

(PDHC). FAs are synthesized in the plastid by a Type II fatty

acid synthase complex (FAS) adding two carbon units to

the extending FA chain in serial reactions. Resulting FAs

are typically 16 or 18 carbons long and attached to an ACP.

Stearic acid (18:0-ACP) can be desaturated by SAD. Long-

chain acyl groups are then hydrolyzed by FAT that release

FAs, which are ultimately activated to CoA esters and

exported to the ER. In the ER, they are assembled into

phosphatidic acid (PA) in the acyl-CoA-dependent Kennedy

pathway with the enzymes glycerol-3-phosphate acyltrans-

ferases (GPATs) and lysophosphatidic acid acyltrans-

ferases (LPAATs), and acyl-CoA. This PA can then be

dephosphorylated de novo by PA phosphatases (PP) to

create diacylglycerol (DAG), which is then available for

acyltransferase reaction. DGAT transfers acyl-CoAs to the

sn-3 position of DAG to produce TAG. Phosphatidylcholine

Table 2 Pathways associated with increased FA concentration and with enrichment scores that were significant at P < 0.01. Pathway identi-
fier (ID) and name are drawn from the MaizeCyc database (https://www.maizegdb.org/metabolic_pathways/), and P and FDR were calculated
in this study

MaizeCyc ID
Lead
traita

Other
traitb Pathway name

Lead trait
P-value

Lead
trait FDR

Other
trait FDR

COA-PWY-1 C16:0 Coenzyme A biosynthesis 0.00399 0.15680
PWY-5035 C16:0 Gibberellin biosynthesis III (early C-13 hydroxylation) 0.00585 0.18314
PWY-5147 C16:0 C18:1 Oleate biosynthesis I (plants) 0.00138 0.15680 0.22442
PWY-5995 C16:0 Linoleate biosynthesis I (plants) 0.00378 0.15680
FASYN-ELONG-PWY C18:0 Fatty acid elongation – saturated 0.00364 0.15615
PWY-5142 C18:0 Acyl-ACP thioesterase pathway 0.00449 0.15615
PWY-5156 C18:0 C16:0 Superpathway of fatty acid biosynthesis II (plant) 0.00146 0.07626 0.15680
PWY-5366 C18:0 Palmitoleate biosynthesis II 0.00449 0.15615
PWY-5367 C18:0 C16:0 Petroselinate biosynthesis 0.00009 0.00926 0.15680
PWY-5971 C18:0 C16:0 Palmitate biosynthesis II (bacteria and plants) 0.00012 0.00926 0.15680
PWY-5973 C18:0 C16:0 Cis-vaccenate biosynthesis 0.00009 0.00926 0.15680
PWY-5989 C18:0 C16:0 Stearate biosynthesis II (plants) 0.00012 0.00926 0.15680
PWY-6151 C18:0 S-adenosyl-L-methionine cycle I 0.00113 0.07093
ARO-PWY C18:1 Chorismate biosynthesis I 0.00112 0.17456
PWY-4081 C18:1 Glutathione redox reactions I 0.00904 0.41883
PWY-5912 C18:1 C16:0 20-Deoxymugineic acid phytosiderophore biosynthesis 0.00306 0.22442 0.18314
PWY-6457 C18:1 Trans-cinnamoyl-CoA biosynthesis 0.00937 0.41883
PWY-6628 C18:1 Superpathway of phenylalanine biosynthesis 0.00200 0.20860
PWY-6629 C18:1 Superpathway of tryptophan biosynthesis 0.00098 0.17456
PWY-5340 C18:2 Sulfate activation for sulfonation 0.00462 0.48231
PWY-5687 C18:2 Pyrimidine ribonucleotides interconversion 0.00693 0.54214
SO4ASSIM-PWY C18:2 Sulfate reduction I (assimilatory) 0.00462 0.48231
UDPNACETYLGALSYN-PWY C18:2 UDP-N-acetyl-D-glucosamine biosynthesis II 0.00322 0.48231
PWY1F-353 C18:3 Glycine betaine biosynthesis III (plants) 0.00469 0.36720
PWY-3282 C18:3 Ammonia assimilation cycle II 0.00125 0.36720
PWY-381 C18:3 Nitrate reduction II (assimilatory) 0.00426 0.36720
PWY-5934 C18:3 Fe(III)-reduction and Fe(II) transport 0.00594 0.37199
PYRIDNUCSYN-PWY-1 C18:3 NAD biosynthesis I (from aspartate, plastidic) 0.00314 0.36720

aThe pathways with the most significant P-value among FA concentration traits.
bAdditional FA concentration trait with significant P-value (P < 0.01).
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(PC) is created via the CDP-choline pathway using CDP-

choline:diacylglycerol cholinephosphotransferase (DAG-

CPT); and cardiolipin (CL) is created via the action of

enzymes phosphatidylglycerol phosphate (PGP) synthase

(PGPS), PGP phosphatase (PGPP), and CL synthase (CLS).

The first step in wax and sphingolipid biosynthesis is

an elongation cycle converting C16:0 and C18:0 fatty

acyl-CoAs to generate VLCFA wax and sphingolipid pre-

cursors between 20 and 34 carbons in length. The first

step involves condensation of malonyl-CoA with an acyl-

CoA catalyzed by a b-ketoacyl-CoA synthase (KCS). The

resulting b-ketoacyl-CoA is reduced by a b–ketoacyl-CoA
reductase (KCR) and the resulting b-hydroxyacyl-CoA then

undergoes dehydration by a b–hydroxyacyl-CoA dehy-

dratase (HCD). In the final step, the enoyl-CoA is reduced

to an acyl-CoA by enoyl-CoA reductase (ECR). This cycle

results in an acyl chain extended by two carbons, and

the cycle can be repeated. FA elongation is catalyzed by

an ER-associated, multienzyme complex known as fatty

acid elongase (FAE). Therefore, the levels of specific

FAs, and total oil, depend on the synthesis of these

lipids from precursors, which are frequently other lipids,

and the degradation of these lipids (often into other

lipids, but also many other compounds). There will be

many more pathways associated with the amount of

each FA, ratios of FAs, and total oil than simply the

biosynthesis pathways that create them, and these path-

ways will be a key to achieve target levels of any speci-

fic FA or lipid.

Figure 3. Graphs of pathway reactions and the run-

ning enrichment score (RES) calculation for COA-

PWY-1, coenzyme A biosynthesis. Genes were

ranked in descending order (left to right) by their

effect scores and paired using the yellow dotted

line with genes in the pathway reaction, denoted by

hash marks at the top of the RES graph. The path-

way enrichment score that coincided with the maxi-

mum running enrichment score is marked by the

black vertical line.

Figure 4. Pathway annotation category for the 86 significantly associated

pathways for decreasing oil content and FA.
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Practical modification of lipid metabolism guided by

pathway analysis

The GWAS by Li et al. (2013) identified 74 loci significantly

associated with kernel oil concentration and fatty acid

composition. Many of these genes are in pathways that

were identified in the current study (Table S1). However,

many of those genes are not in pathways in the MaizeCyc

database, so they could not be identified by pathway anal-

ysis. Conversely, many of the pathways identified in the

current study contained no genes identified by GWAS, as

no single gene was associated at significance levels

exceeding the GWAS threshold, but the cumulative RES of

multiple genes in these pathways allowed them to be iden-

tified. We therefore see that the two analyses are comple-

mentary for identifying more mechanisms and candidate

genes for complex traits.

We have shown that identification of biosynthesis path-

ways for FA derivatives greatly broaden understanding of

mechanisms of lipid metabolism and/or catabolism.

Because starch, oil and protein are the three main compo-

nents in maize kernels, the ability to manipulate oil and FA

concentrations now allows breeders to create specialty

maize for different breeding targets. There is a tradeoff

between the lipid and starch components in maize grain

(Schwender et al., 2015). Increasing lipid content also

increases plastidic fatty acid synthesis and glycolytic flux,

while decreasing glycolytic intermediates. In addition, the

lipid/starch tradeoff is most likely mediated by allosteric

feedback regulation of phosphofructokinase and ADP-glu-

cose pyrophosphorylase. Our pathway results provide

hints as to the mechanism of this lipid/starch tradeoff. Alle-

lic variation exists within the genotypes of this GWAS

panel that should allow precise manipulation of FA content

within the FA biosynthesis and carbon partitioning path-

ways. Genes at critical branching points of pathways with

the strongest associations to the desired FA can be tar-

geted via allele mining or genome editing to create lines

with the exact desired levels of these FA.

TAG is the predominant form of storage lipids in seeds

of oil crops. It is clear from this pathway analysis that the

synthesis and assembly of TAG in plants involves a meta-

bolic network of FA fluxes through multiple subcellular

compartments containing alternative pathways to produce

different lipid compositions. Therefore, systems biology

offers a powerful and effective tool to assemble multiple

genes involved in lipid metabolic engineering. For exam-

ple, genes for competing pathways can be disrupted to

direct metabolic flux toward a desired route. From Fig-

ure 1, we see that FAD2 encodes the enzyme that converts

18:1 into 18:2. Genome editing could be used to ‘knock

out’ or reduce FAD2 activity for enhancement of oleic acid.

This approach has been demonstrated by silencing the

soybean FAD2 gene family to create a high oleic-acid seed

trait (Haun et al., 2014). In addition, DGAT1-2 is responsible

for the TAG content (Figure 1). We could reduce FAD2

activity and increase DGAT1-2 activity for enhancement of

oleic acid and TAG simultaneously to design a maize line

with high oleic acid and oil content.

While yield improvement has long been the primary

goal of conventional maize breeding, other nutritional or

industrial traits are becoming more important. This path-

way analysis of lipid metabolism provides information to

identify which pathways should be tweaked at one or a

few key genes each, to create lines with the precise levels

or ratios of lipids desired. This information may soon be

used, along with the development and application of syn-

thetic biology tools to design and assemble large DNA

constructs, and/or gene editing, to bring target lipid syn-

thesis traits together with excellent agronomic and yield

performance in the creation of superior high-oil maize

lines.

EXPERIMENTAL PROCEDURES

GWAS dataset

The GWAS analysis results of Li et al. (2013), which were used as
input data for the pathway analysis are described briefly as fol-
lows. A GWAS analysis was run on a panel of 368 diverse inbred
lines including 23 high-oil lines. All entries were genotyped using
RNA sequencing. About 560 000 polymorphisms with minor allele
frequency (MAF) ≥ 0.05 were selected for analysis. Linkage dise-
quilibrium (LD) was calculated between each pair of SNPs in TAS-
SEL (Bradbury et al., 2007). Overall LD decay was rapid, reaching
500 bp (r2 = 0.1) in the 368 lines.

All 368 lines were phenotyped for oil concentration and compo-
sition in replicated field experiments in four environments in
China. Levels of total oil and 10 individual FAs in the kernels were
measured according to Yang et al. (2010) and reported in Li et al.
(2013), along with ratios of different FAs. The pathway analyses
presented here were run on oil concentration, the FA concentra-
tion of palmitic (C16:0), stearic (C18:0), oleic (C18:1), linoleic
(C18:2), and linolenic (C18:3) acids, and the ratios of palmitic to
stearic (C16:0/C18:0), stearic to oleic (C18:0/C18:1), oleic to linoleic
(C18:1/C18:2), and linoleic to linolenic (C18:2/C18:3), 10 traits in all.

Pathway analysis

The resulting SNP-trait association data generated by TASSEL
(Bradbury et al., 2007) were implemented in the pathway analysis
according to Tang et al. (2015) and included the SNP-trait associa-
tion values for significance (P), correlation (R2 or proportion of the
phenotypic variation accounted for), and effect values along with
the calculated LD values for D0, and R2, and P between each mar-
ker SNP and its closest neighboring SNPs (50 upstream and 50
downstream). SNPs were then assigned to genes using a tagSNP
approach outlined by Tang et al. (2015) in their decision tree.
Briefly, if LD analysis showed no linkage between a reference SNP
and other SNPs, then the reference SNP was the tagSNP. If LD
analysis found linkage between the reference SNP and a block of
other SNPs in either upstream and downstream directions, then
selection of the tagSNP from the reference SNP or the SNPs in the
linkage block was based on the SNP-trait association effect values
(majority sign, positive or negative, and magnitude), P-values, and
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distance between the reference SNP and closest SNP in the link-
age block. The purpose of the tagSNP was to reduce the dimen-
sionality of the dataset to SNPs with the greatest effects on the
trait under analysis. The gene(s) causing the SNP-trait association
was then assumed to be within 1 Kb of the SNP. The reason for
using only 1 kb is because many cis-acting elements that regulate
gene expression reside within the gene or in immediate regions
upstream and downstream of the gene coding region. If a gene
was located, then the SNP-trait association effect value was trans-
ferred to the gene and used for gene-set enrichment analysis
(Tang et al., 2015). Gene sets were defined as the genes according
to membership in pathways and superpathways found in the Mai-
zeCyc database (MaizeCyc v2.1; Monaco et al., 2013). Only path-
ways with five or more genes (313 pathways in total) were
considered to reduce bias from a small sample size. Genes were
ranked by their effects (negative to positive), and a running sum
statistics similar to a weighted Kolmogorov�Smirnov statistics
was calculated. The weighting factor for the running sum statistics
was the absolute value of the SNP-trait association effect. The
enrichment score for the pathway was the maximum positive
deviation of the running sum statistics from zero. Significance of
the enrichment score was determined by permutation analysis
(1000 random permutations of the effect values). The P-values for
the pathway enrichment scores were then corrected for false dis-
covery rate (FDR) using the QVALUE package in R (Storey and
Tibshirani, 2010, R package version 2.2.2. http://github.com/jdstorey/
qvalue).
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Table S1. Summary of significantly associated genes from the
GWAS study of Li et al. (2013), and those that were also identified
by pathway analysis. Pathway identifier (ID) and name are drawn
from the MaizeCyc database (https://www.maizegdb.org/metab
olic_pathways/).
Table S2. Summary of significantly associated SNPs from the
GWAS study of Li et al. (2013) with R2 values, and the number of
tagSNPs and genes from the present study.
Table S3. Pathways associated with increased FA content and with
enrichment scores that were significant at 0.01 < P < 0.05. Path-
way identifier (ID) and name are drawn from the MaizeCyc

database (https://www.maizegdb.org/metabolic_pathways/), and P
and FDR were calculated in this study.
Table S4. Number of genes which contributed to the enrichment
score in significant pathways at P < 0.01, and which are shown as
hatch marks at the top of the running enrichment score graphs.
Pathway identifier (ID) and name are drawn from the MaizeCyc
database (https://www.maizegdb.org/metabolic_pathways/).
Table S5. Pathways associated with decreased oil and FA concen-
tration with enrichment scores significant at P < 0.05. Pathway
identifier (ID) and name are drawn from the MaizeCyc database
(https://www.maizegdb.org/metabolic_pathways/), and P and FDR
were calculated in this study.
Table S6. Pathways associated with effects on the ratio of different
FA traits with enrichment scores significant at P < 0.01. Pathway
identifier (ID) and name are drawn from the MaizeCyc database
(https://www.maizegdb.org/metabolic_pathways/), and P and FDR
were calculated in this study. (https://www.maizegdb.org/metab
olic_pathways/).

REFERENCES

Alrefai, R., Berke, T.G. and Rocheford, T.R. (1995) Quantitative trait locus

analysis of fatty acid concentration in maize. Genome, 38, 894–901.
https://doi.org/10.1139/g95-118.

Baute, J.D., Herman, F., Coppens, J., De Block, B., Slabbinck, B., Dell’Aqcua,

M., P�e, M.E., Maere, S., Nelissen, H. and Inz�e, D. (2016) Combined large-

scale phenotyping and transcriptomics in maize reveals a robust growth

regulatory network. Plant Physiol. 170, 1848–1867. https://doi.org/10.

1104/pp.15.01883.

Bel�o, A., Zheng, P.Z., Luck, S., Shen, B., Meyer, D.J., Li, B., Tingey, S. and

Rafalski, A. (2008) Whole genome scan detects an allelic variant of fad2

associated with increased oleic acid levels in maize. Mol. Genet. Geno-

mics, 279, 1–10. https://doi.org/10.1007/s00438-007-0289-y.
Bradbury, P.J., Zhang, Z.W., Kroon, D.E., Casstevens, T.M., Ramdoss, Y.

and Buckler, E.S. (2007) TASSEL: software for association mapping of

complex traits in diverse samples. Bioinformatics, 23, 2633–2635.
https://doi.org/10.1093/bioinformatics/btm308.

Clark, D., Dudley, J.W., Rocheford, T.R. and LeDeaux, J.R. (2006) Genetic

analysis of corn kernel chemical composition in the random mated 10

generation of the cross of generation 70 of IHO 9 ILO. Crop Sci. 46, 807–
819. https://doi.org/10.2135/cropsci2005.06-0153.

De Abreu, E., Lima, F., Li, K., Wen, W., Yan, J., Nikoloski, Z., Willmitzer, L.

and Brotman, Y. (2018) Unraveling lipid metabolism in maize with time-

resolved multi-omics data. Plant J. 93, 1102–1115. https://doi.org/10.1104/
pp.15.01883.

Dudley, J.W. and Lambert, R.J. (2004) 100 generation of selection for oil

and protein in corn. Plant Breed. Rev. 24, 79–110. https://doi.org/10.1002/
9780470650240.ch5.

Dyer, J.M. and Mullen, R.T. (2001) Immunocytological localization of two

plant fatty acid desaturases in the endoplasmic reticulum. FEBS Lett.

494, 44–47. https://doi.org/10.1016/s0014-5793(01)02315-8.
Friso, G., Majeran, W., Huang, M., Sun, Q. and van Wijk, K.J. (2010) Recon-

struction of metabolic pathways, protein expression, and homeostasis

machineries across maize bundle sheath and mesophyll chloroplasts:

large- quantitative proteomics using the first maize genome assembly.

Plant Physiol. 152, 1219–1250. https://doi.org/10.1104/pp.109.152694.
Han, Y., Xu, G., Du, H., Hu, J., Liu, Z., Li, H., Li, J. and Yang, X. (2017) Natu-

ral variations in stearoyl-acp desaturase genes affect the conversion of

stearic to oleic acid in maize kernel. Theor. Appl. Genet. 130, 151–161.
https://doi.org/10.1007/s00122-016-2800-5.

Haun, W., Coffman, A., Clasen, B.M. et al. (2014) Improved soybean oil

quality by targeted mutagenesis of the fatty acid desaturase 2 gene fam-

ily. Plant Biotechnol. J. 12, 934–940. https://doi.org/10.1111/pbi.12201.
King, A., Nam, J.W., Han, J., Hilliard, J. and Jaworski, J.G. (2007) Cuticular

wax biosynthesis in petunia petals: cloning and characterization of an

alcohol-acyltransferase that synthesizes wax-esters. Planta, 226, 381–394.
https://doi.org/10.1007/s00425-007-0489-z.

Lambert, R.J., Alexander, D.E. and Mejaya, I.J. (2004) Single kernel selec-

tion for increased grain oil in maize synthetics and high-oil hybrid

© 2019 The Authors.
The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.,

The Plant Journal, (2019), 98, 853–863

862 Hui Li et al.

http://github.com/jdstorey/qvalue
http://github.com/jdstorey/qvalue
https://www.maizegdb.org/metabolic_pathways/
https://www.maizegdb.org/metabolic_pathways/
https://www.maizegdb.org/metabolic_pathways/
https://www.maizegdb.org/metabolic_pathways/
https://www.maizegdb.org/metabolic_pathways/
https://www.maizegdb.org/metabolic_pathways/
https://www.maizegdb.org/metabolic_pathways/
https://www.maizegdb.org/metabolic_pathways/
https://doi.org/10.1139/g95-118
https://doi.org/10.1104/pp.15.01883
https://doi.org/10.1104/pp.15.01883
https://doi.org/10.1007/s00438-007-0289-y
https://doi.org/10.1093/bioinformatics/btm308
https://doi.org/10.2135/cropsci2005.06-0153
https://doi.org/10.1104/pp.15.01883
https://doi.org/10.1104/pp.15.01883
https://doi.org/10.1002/9780470650240.ch5
https://doi.org/10.1002/9780470650240.ch5
https://doi.org/10.1016/s0014-5793(01)02315-8
https://doi.org/10.1104/pp.109.152694
https://doi.org/10.1007/s00122-016-2800-5
https://doi.org/10.1111/pbi.12201
https://doi.org/10.1007/s00425-007-0489-z


development. Plant Breed. Rev. 24, 153–175. https://doi.org/10.1002/

9780470650240.

Laurie, C.C., Chasalow, S.D., LeDeaux, J.R., McCarroll, R., Bush, D., Hauge,

B., Lai, J.S., Clark, D., Rocheford, T.R. and Dubley, J.W. (2004) The

genetic architecture of response to long-term artificial selection for oil

concentration in the maize kernel. Genetics, 168, 2141–2155. https://doi.
org/10.1534/genetics.104.029686.

Li, L., Li, H., Li, Q. et al. (2011) An 11-bp insertion in Zea mays fatb reduces

the palmitic acid content of fatty acids in maize grain. PLoS One, 6,

e24699. https://doi.org/10.1371/journal.pone.0024699.

Li, H., Peng, Z.Y., Yang, X.H. et al. (2013) Genome-wide association study

dissects the genetic architecture of oil biosynthesis in maize kernels. Nat.

Genet. 45, 43–50. https://doi.org/10.1038/ng.2484.
Li-Beisson, Y., Shorrosh, B., Beisson, F. et al. (2010) Acyl-lipid metabolism.

Arabidopsis Book, 11, e0161. https://doi.org/10.1199/tab.0161.

Li-Beisson, Y., Shorrosh, B., Beisson, F. et al. (2013) Acyl-lipid metabolism.

Arabidopsis Book, 11, e0161. https://doi.org/10.1199/tab.0161

Monaco, M.K., Sen, T.Z., Dharmawardhana, P.D. et al. (2013) Maize meta-

bolic network construction and transcriptome analysis. Plant Genome, 6,

1–12. https://doi.org/10.3835/plantgenome2012.09.0025.

Musungu, B., Bhatnagar, D., Brown, R.L., Fakhoury, A.M. and Geisler, M.

(2015) A predicted protein interactome identifies conserved global net-

works and disease resistance subnetworks in maize. Front. Genet. 6, 201.

https://doi.org/10.3389/fgene.2015.00201.

Owens, B.F., Lipka, A.E., Magallanes-Lundback, M. et al. (2014) A founda-

tion for provitamin A biofortification of maize: genome-wide association

and genomic prediction models of carotenoid levels. Genetics, 198,

1699–1716. https://doi.org/10.1534/genetics.114.169979.
Peters, N.K., Frost, J.W. and Long, S.R. (1986) A plant flavone, luteolin,

induces expression of Rhizobium meliloti nodulation genes. Science,

233, 977–980. https://doi.org/10.1126/science.3738520.
Remington, D.L., Thornsberry, J.M., Matsuoka, Y., Wilson, L.M., Whitt, S.R.,

Doebley, J., Kresovich, S., Goodman, M.M. and Buckler, E.S. (2001)

Structure of linkage disequilibrium and phenotypic associations in the

maize genome. Proc. Natl. Acad. Sci. USA, 98, 11479–11484. https://doi.
org/10.1073/pnas.201394398.

Rubio, S., Larson, T.R., Gonzalez-Guzman, M., Alejandro, S., Graham,

I.A., Serrano, R. and Rodriguez, P.L. (2006) An Arabidopsis mutant

impaired in coenzyme A biosynthesis is sugar dependent for seedling

establishment. Plant Physiol. 140, 830–843. https://doi.org/10.1104/pp.

105.072066.

Ryan, K.G., Swinny, E.E., Winefield, C. and Markham, K.R. (2001) Flavonoids

and UV photoprotection in Arabidopsis mutants. Z. Naturforsch. C. 56,

745–754. https://doi.org/10.1515/znc-2001-9-1013.
Salas, J.J. and Ohlrogge, J.B. (2002) Characterization of substrate specificity

of plant FatA and FatB acyl-ACP thioesterases. Arch. Biochem. Biophys.

403, 25–34. https://doi.org/10.1016/s0003-9861(02)00017-6.

Schwender, J., Hebbelmann, I., Heinzel, N. et al. (2015) Quantitative multi-

level analysis of central metabolism in developing oilseeds of oilseed

rape during in vitro culture. Plant Physiol. 168, 828–848. https://doi.org/
10.1104/pp.15.00385.

Song, T.M. and Chen, S.J. (2004) Long term selection for oil concentration

in five maize populations. Maydica, 49, 9–14. https://journals-crea.4scie

nce.it/index.php/maydica/issue/archive.

Storey, J.D. and Tibshirani, R. (2003) Statistical significance for genome-

wide studies. Proc. Natl. Acad. Sci. U S A. 100, 9440–9445. https://doi.

org/10.1073/pnas.1530509100.

Subramanian, A., Tamayo, P., Mootha, V.K. et al. (2005) Gene set enrich-

ment analysis: a knowledge-based approach for interpreting genome-

wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550.
https://doi.org/10.1073/pnas.0506580102.

Sughrour, J.R. and Rocheford, T.R. (1994) Restriction fragment length poly-

morphism differences among Illinois long-term selection oil trains.

Theor. Appl. Genet. 87, 916–924. https://doi.org/10.1007/bf00225785.
Tang, J.D., Perkins, A., Williams, W.P. and Warburton, M.L. (2015) Using

genome-wide associations to identify metabolic pathways involved in

maize aflatoxin accumulation resistance. BMC Genomics, 16, 673.

https://doi.org/10.1186/s12864-015-1874-9.

Walley, J.W., Sartor, R.C., Shen, Z. et al. (2016) Integration of omic net-

works in a developmental atlas of maize. Science, 353, 814–818. https://d
oi.org/10.1126/science.aag1125.

Wang, K., Li, M. and Bucan, M. (2007) Pathway-based approaches for analy-

sis of genomewide association studies. Am. J. Hum. Genet. 81, 1278–
1283. https://doi.org/10.1086/522374.

Watson, S.A. (1987) Structure and composition. In Corn: Chemistry and

Technology (Watson, S.A. and Ramstad, P.E., eds.). St. Paul, MN: Ameri-

can Association of Cereal Chemists, Inc., pp. 53–82. https://my.aaccnet.

org/ItemDetail?iProductCode=27330

Yang, X.H., Guo, Y.Q., Yan, J.B., Zhang, J., Song, T.M., Rocheford, T. and

Li, J.S. (2010) Major and minor QTL and epistasis contribute to fatty acid

composition and oil content in high-oil maize. Theor. Appl. Genet. 120,

665–678. https://doi.org/10.1007/s00122-009-1184-1.
Yu, J.M. and Buckler, E.S. (2006) Genetic association mapping and genome

organization of maize. Curr. Opin. Biotechnol. 17, 155–160. https://doi.

org/10.1016/j.copbio.2006.02.003.

Zhang, P., Allen, W.B., Nagasawa, N. et al. (2012) A transposable element

insertion within ZmGE2 gene is associated with increase in embryo to

endosperm ratio in maize. Theor. Appl. Genet. 125, 1463–1471. https://d
oi.org/10.1007/s00122-012-1926-3.

Zheng, P., Allen, W.B., Roesler, K. et al. (2008) A phenylalanine in DGAT is a

key determinant of oil content and composition in maize. Nat. Genet. 40,

367–372. https://doi.org/10.1038/ng.85.

© 2019 The Authors.
The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.,
The Plant Journal, (2019), 98, 853–863

Pathway analysis of maize GWAS lipid biosynthesis 863

https://doi.org/10.1002/9780470650240
https://doi.org/10.1002/9780470650240
https://doi.org/10.1534/genetics.104.029686
https://doi.org/10.1534/genetics.104.029686
https://doi.org/10.1371/journal.pone.0024699
https://doi.org/10.1038/ng.2484
https://doi.org/10.1199/tab.0161
https://doi.org/10.1199/tab.0161
https://doi.org/10.3835/plantgenome2012.09.0025
https://doi.org/10.3389/fgene.2015.00201
https://doi.org/10.1534/genetics.114.169979
https://doi.org/10.1126/science.3738520
https://doi.org/10.1073/pnas.201394398
https://doi.org/10.1073/pnas.201394398
https://doi.org/10.1104/pp.105.072066
https://doi.org/10.1104/pp.105.072066
https://doi.org/10.1515/znc-2001-9-1013
https://doi.org/10.1016/s0003-9861(02)00017-6
https://doi.org/10.1104/pp.15.00385
https://doi.org/10.1104/pp.15.00385
https://journals-crea.4science.it/index.php/maydica/issue/archive
https://journals-crea.4science.it/index.php/maydica/issue/archive
https://doi.org/10.1073/pnas.1530509100
https://doi.org/10.1073/pnas.1530509100
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1007/bf00225785
https://doi.org/10.1186/s12864-015-1874-9
https://doi.org/10.1126/science.aag1125
https://doi.org/10.1126/science.aag1125
https://doi.org/10.1086/522374
https://my.aaccnet.org/ItemDetail?iProductCode=27330
https://my.aaccnet.org/ItemDetail?iProductCode=27330
https://doi.org/10.1007/s00122-009-1184-1
https://doi.org/10.1016/j.copbio.2006.02.003
https://doi.org/10.1016/j.copbio.2006.02.003
https://doi.org/10.1007/s00122-012-1926-3
https://doi.org/10.1007/s00122-012-1926-3
https://doi.org/10.1038/ng.85

