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SUMMARY

It is generally recognized that many favorable genes which were lost during domestication, including those

related to both nutritional value and stress resistance, remain hidden in wild relatives. To uncover such

genes in teosinte, an ancestor of maize, we conducted metabolite profiling in a BC2F7 population generated

from a cross between the maize wild relative (Zea mays ssp. mexicana) and maize inbred line Mo17. In total,

65 primary metabolites were quantified in four tissues (seedling-stage leaf, grouting-stage leaf, young kernel

and mature kernel) with clear tissue-specific patterns emerging. Three hundred and fifty quantitative trait

loci (QTLs) for these metabolites were obtained, which were distributed unevenly across the genome and

included two QTL hotspots. Metabolite concentrations frequently increased in the presence of alleles from

the teosinte genome while the opposite was observed for grain yield and shape trait QTLs. Combination of

the multi-tissue transcriptome and metabolome data provided considerable insight into the metabolic varia-

tions between maize and its wild relatives. This study thus identifies favorable genes hidden in the wild rela-

tive which should allow us to balance high yield and quality in future modern crop breeding programs.

Keywords: maize, teosinte, primary metabolism, genetic basis, quantitative trait locus.

INTRODUCTION

Maize (Zea mays ssp. mays) plays a vital role in human

nutrition and energy supply. It is also one of the most eco-

nomically important grain crops for feed, biofuel and

industrial raw materials, with an approximately eight-fold

increase in yield achieved over the past century (Duvick,

2005). Considerable evidence suggests that maize was

domesticated from its progenitor Balsas teosinte (Zea

mays ssp. parviglumis) in mid- to lowland regions of

southern Mexico approximately 9000 years ago (Matsuoka

et al., 2002; Piperno et al., 2009; Hufford et al., 2012). Maize

and teosinte differ remarkably in plant morphology, yet

only about 1200 genes were selected during domestication

(Wright et al., 2005). Furthermore, the maize transcriptome

has been substantially altered by domestication and

improvement processes, with hundreds to thousands of

genes having different expression patterns and co-expres-

sion profiles between cultivated maize and teosinte (Wright

et al., 2005; Hufford et al., 2012; Swanson-Wagner et al.,

2012) and among tropical and temperate maize (Liu et al.,

2015). The targeted genes were functionally enriched in

biotic stress responses, which may reflect both the effects

of inbreeding and changes in natural conditions from the

place of origin (Swanson-Wagner et al., 2012). Genetic

diversity was reduced during domestication, mainly

because of directional artificial selection, natural selection

and genetic drift. It has been reported that introgression of

teosinte into cultivated maize could improve maize
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germplasm, resulting in plants that are more resistant to

insects, pathogens and abiotic stress (Takahashi et al.,

2012).

Considerable progress has been made toward under-

standing the differences between maize and teosinte, with

many genes having been identified as responsible for

changes in maize plant architecture and phenology, includ-

ing teosinte glume architecture1 (tga1) (Wang et al., 2005),

teosinte branched1 (tb1) (Doebley et al., 1997), barren

stalk1 (ba1) (Gallavotti et al., 2004), ramosa1 (ra1) (Voll-

brecht et al., 2005), zfl1(Bomblies and Doebley, 2006) and

zfl2(Bomblies and Doebley, 2006). Beyond visible differ-

ences, some physiological traits have also been studied,

including the levels of phenolics and antioxidant activities

(Zavala-L�opez et al., 2018), insect and pathogen resistance

(Lange et al., 2014), anti-herbivore defenses (Maag et al.,

2015) and resistance to southern leaf blight (Lennon et al.,

2017) gray leaf spot (Lennon et al., 2016).

All these differences were determined to be the conse-

quence of either genome diversity and/or transcriptome

regulation. Recently, several studies have demonstrated

that some specific nutritional and flavor qualities are sig-

nificantly reduced in modern cultivars compared with

their wild progenitors, with the clearest evidence of this

being in tomato (Tieman et al., 2017). It was also recently

demonstrated that teosinte has a higher protein and lipid

content than either the maize landraces or the inbred

lines (Flint-Garcia et al., 2009). Furthermore, the differ-

ence in maize and teosinte kernel components may be

reflected in the metabolite and starch content and even-

tually influence maize starch characteristics (such as

starch viscosity). Thus, teosinte may be useful for pro-

moting maize breeding by reintroducing the favorable

exotic alleles lost during the domestication and improve-

ment processes of maize breeding (Zamir, 2001; Taka-

hashi et al., 2012).

Zea mays ssp. mexicana (hereafter mexicana) is a wild

annual grass native to high altitudes in northern and cen-

tral Mexico and is a close wild relative of cultivated maize.

Compared with cultivated maize, mexicana has a stronger

growth capacity, higher kernel protein content and more

dominant resistance to many fungal diseases (Fang et al.,

2012). Thus, it is a very important genetic material for

maize improvement. Quantitative trait locus (QTL) analysis

can help detect genes/loci in wild species that may

improve yield- or quality-related traits in elite varieties.

Several studies have been reported concerning introgres-

sion of favorable traits from wild species into cultigens.

Plants overexpressing the mexicana allele ZmmICE1 show

more resistance to freezing stress (Lu et al., 2017) and the

early flowering allele ZEA CENTRORADIALIS 8 (ZCN8),

which originated from mexicana, introgressed into maize

and contributed to the adaptation of maize to northern

high latitudes (Guo et al., 2018). In tomato, the Tm-2a allele

from Solanum peruvianum was introgressed into elite cul-

tivars, thus conferring tomato mosaic virus resistance to

the cultivars (Verlaan et al., 2013).

Metabolomics has been developed into a powerful tool

for evaluating phenotypic variance within broad genetic

populations (Luo, 2015; Fernie and Tohge, 2017; Wen et al.,

2018). In an attempt to connect the gap between genomes

and end-phenotypes, the analysis of differences in metabo-

lite abundance has also proved to be an efficient strategy

(Obata et al., 2015). Metabolomics has, furthermore, pro-

vided us with considerable insight into both genetic and

biochemical regulation of metabolism, with studies includ-

ing the comparison of cultivated maize and maize lan-

draces (Venkatesh et al., 2016), the study of a maize nested

association mapping population (Zhang et al., 2015) and

the study of metabolite QTLs in recombinant inbred lines

(Wen et al., 2015) or diverse association mapping popula-

tions (Wen et al., 2018) all proving highly instructive. We

have a relatively clear knowledge and understanding of the

difference between maize and teosinte at the levels of

genetic diversity and transcriptional regulation (Hufford

et al., 2012; Swanson-Wagner et al., 2012); however, we

have very limited knowledge concerning the global meta-

bolic differences between the species.

The generation of introgression populations by crossing

wild relatives and modern elite cultivars is a good strategy

for identifying the hidden genes in wild species and has

been widely used in maize and other crops (Schauer et al.,

2006; Briggs et al., 2007; Liu et al., 2016; Zhu et al., 2018).

Here, a previously developed introgression population cre-

ated between the elite inbreed line Mo17 and teosinte

(mexicana) (Yang et al., 2017) was used to dissect the hid-

den genes/loci affecting metabolite abundance. A total of

65 primary metabolites were measured using a GC-MS

platform in four different tissues. The QTL mapping analy-

sis of these metabolites provided us an alternative under-

standing of the genetic regulation of primary metabolism

and yield-related traits. It demonstrated that yield was neg-

atively associated with most of the metabolic traits, sug-

gesting that a balance needs to be found between yield

and enhanced metabolite levels. These results provide a

framework which will allow for the recovery of nutritionally

important components via knowledge-driven molecular

breeding.

RESULTS

Variation of primary metabolites in multiple tissues of a

teosinte–maize BC2F7 population

The BC2F7 introgression population between Mo17 and

teosinte (mexicana; hereafter, TM population) contained

191 lines which were analyzed by GC-MS to determine the

levels of primary metabolites from four different tissues

(i.e. SL, seedling leaf; ML, mature leaf; YK, young kernel;
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MK, mature kernel). A total of 65 primary metabolites (62,

61, 56 and 50 in SL, ML, YK and MK tissues, respectively)

with known chemical structure were detected. These were

classified into five categories: 22 amino acids (20 protein

amino acids and 2 non-protein amino acids), 21 organic

acids, 12 sugars, 4 amines and 6 miscellaneous metabo-

lites classified hereafter as ‘others’. All 65 metabolites were

detected in at least two tissues and 40 were detected in all

four tissues (Table S1 in the online Supporting Informa-

tion). The dramatic difference in morphology between the

elite inbred line Mo17 and its collateral ancestor – teosinte

– was mirrored by surprising accumulation patterns of pri-

mary metabolites. Approximately 60% (134/229) of primary

metabolites displayed a more than 10-fold change across

the TM population (Figures S1–S4). Larger variation of pri-

mary metabolites within the population was observed in

the more mature tissues (leaf and kernel) compared with

the younger tissues (Figure 1a). The pair-wise correlation

between metabolites from the same tissue is much stron-

ger than that from different tissues (Figure 1b, Table S2),

which is in agreement with our previous findings (Wen

et al., 2014, 2015). Subsequent cluster analyses were con-

ducted within the data obtained for each independent tis-

sue and in the combined dataset (Figures 1c and S5).

Perhaps unsurprisingly, within the same tissue, metabo-

lites of the same compound class are more tightly linked

with each other.

Mode of inheritance of genome-wide loci for primary

metabolite variance in multiple tissues

Based on the constructed linkage map (Yang et al., 2017)

and phenotypic value (primary metabolites, kernel shape

and compositions) measured in the population, QTL analy-

sis was performed. In total, 350 QTLs (97 in SL, 68 in ML,

98 in YK and 87 in MK) were detected across the whole

genome. The length of the QTL one-LOD support

Figure 1. Summary of primary metabolic variation detected in different maize tissues.

(a) Fold changes distribution of each metabolite in different tissues [SL, seedling leaf; ML, mature leaf, i.e. ear leaf at 15 days after pollination (DAP); YK, young

kernel, i.e. kernel at 15 DAP; MK, mature kernel.

(b) The Pearson correlation coefficient matrix (under triangle) between pair-wise primary metabolites measured in the same or different tissues. Absolute values

of correlations are shaded in red. The strength of the correlation is indicated by red color saturation.

(c) Hierarchical clustering analysis of primary metabolites measured in the seedling leaf stage. Those metabolites were classified into groups, ‘amino acid’, ‘or-

ganic acid’, ‘sugar’, ‘amine’ and ‘others’ which are colored with purple, blue, vermillion, neon yellow and green, respectively.
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confidence interval varies from 0.5 to 12.3 cM with a mean

of 3.9 cM (Table S3). A total of 279 genes with a selection

signal were overlapped with those QTLs (Figure S6,

Table S4). The percentage of metabolic variation explained

by the QTLs ranged from 4.7% to 57.9% with a mean of

13.8%. Similarly, the phenotypic variation explained by

each QTL in four tissues increased from early stage (YL) to

late stage (MK) and the median R2 values ranged from

9.2% in YL to 14.3% in MK (Figure 2f).

The influence of the different genetic backgrounds

(Mo17 and teosinte) on primary metabolite abundance was

examined. Most primary metabolite QTLs were character-

ized as displaying moderate additive effects (Figure 2f),

which indicates that the accumulation of primary metabo-

lites is probably influenced by many genes. The over-

whelming proportion of the interactions between QTLs

was positive in all four tissues. Furthermore, for QTLs with

additive effects for increasing primary metabolite content,

the teosinte alleles displayed greater effect than the Mo17

alleles. By contrast, the opposite was noted for kernel

shape- and starch-related traits, that is the Mo17 alleles

had greater effects than the teosinte alleles (Figure 3a).

The regulation of metabolites and other traits measured in

this study was clearly strongly specific at the spatiotempo-

ral level (Figure 2a). Moreover, the uneven distribution of

QTLs across the genome is even clearer when looking

solely at the QTLs in a specific tissue or direction of addi-

tive effect (Figure 3b), with QTLs enriched in specific gen-

ome regions being likely to show the same directionality

of effect.

Analysis of the observed QTL hotspots leads to clues

concerning the process of maize domestication and

improvement. The identified QTLs showed a significantly

uneven distribution and two QTL hotspots (chromosomes

2 and 6, permutation test, P < 0.01) were identified (Fig-

ure 2b). These two hotspots are mainly composed of

amino acid-related QTLs mapped in YK and MK tissues.

The hotspot detected on chromosome 2 is mainly com-

posed of amino acid-related QTLs in the YK tissue (Fig-

ure 2d). The hotspot on chromosome 6 encompassed

QTLs for 19 metabolites (Figure 2e), 12 of which were

amino acid-related in the MK. Gene Ontology (GO) analysis

was conducted on the two hotspot intervals. Significantly

enriched GO terms detected in the hotspot on chromo-

some 2 mainly concerned the negative regulation of bio-

logical process, cellulose metabolic process and glucan

biosynthetic process. In this interval, some QTLs associ-

ated with maize starch content and starch viscosity were

also mapped, but with opposite directionality from the pri-

mary metabolic QTLs (Figure 3a,b). Furthermore, 41 genes

with domestication or improvement signals were also

detected in this region, according to previous comparative

population genomics analysis of large-scale re-sequencing

of the genomes of maize and its wild relatives (Table S4)

(Hufford et al., 2013). This may reflect that artificial selec-

tion for high yield forced changes in the regulation of pri-

mary metabolism, especially that of the amino acids.

Within the other QTL hotspot on chromosome 6, GO terms

with response to external stimulus were significantly

enriched (P < 0.001). In previous studies, it was demon-

strated that primary metabolites such as isoleucine, valine,

threonine, 4-aminobutanoate, glycine, serine myo-inositol

and tricarboxylic acid cycle intermediates increased follow-

ing drought and/or salt stress (Henry et al., 2015; Obata

et al., 2015). A QTL affecting kernel size with the favorable

allele from Mo17 was also identified in this region (Fig-

ure 3b). We speculate that long-term domestication and

breeding processes have reshaped the mechanism of

amino acid regulation and metabolism to meet the increas-

ing demand for high-yield maize.

A metabolic network comprising most of the primary

metabolites detected in this study was adopted to demon-

strate the additive effects and inter-metabolite correlations

(Figure 4). This network includes 77% (50/65) of the identi-

fied primary metabolites, which can be roughly classified

into three clusters. One cluster is composed of sugars

including sucrose, glucose and fructose raffinose. The sec-

ond, encompassing biosynthetic and catabolic pathways of

amino acid metabolism, included 20 protein amino acids

and two non-protein amino acids. The tricarboxylic acid

cycle was the main component of the third cluster, with

citrate, cis-aconitate and malate being involved. Within this

network, the ratio of QTLs with favorable alleles coming

from the male parent teosinte or female parent Mo17 was

recorded and represented in the color bar adjacent to the

metabolite name in red or blue, respectively (Figure 4).

With the exception of the organic acids pyruvate and cis-

aconitate, most metabolites had a greater number of QTLs

with favorable alleles coming from the male parent teo-

sinte. This suggests that there are many favorable alleles

promoting primary metabolite content in the teosinte gen-

ome compared with the Mo17 genome – irrespective of tis-

sue type and developmental stage. In a previous study, a

maize ideotype with high grain yield was proposed that

displayed low accumulation of soluble amino acids and

carbohydrates in the leaves (Ca~nas et al., 2017); intrigu-

ingly, the metabolome postulated for this ideotype is very

similar to what we actually observed here for teosinte.

Even though genetic variance of quantitative traits was

mainly characterized by additive gene effects (Hill et al.,

2008), epistatic effects have been detected and demon-

strated to exert great influence on diverse characteristics in

a wide range of crops. For example, tocopherol content in

soybean (Liu et al., 2017), fruit cracking in tomato (Capel

et al., 2017), barley yield (Xu and Jia, 2007), heading date

in rice (Chen et al., 2015) and primary metabolite abun-

dance in maize (Wen et al., 2015). In this research, epistatic

effects that existed in every paired QTL for each primary
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Figure 2. Summary of the locations of quantitative trait loci (QTLs) across the maize genome and their effects.

(a) Chromosomal distribution of primary metabolic QTLs identified in four tissues of the maize plant. The QTL confidence intervals are represented by rectan-

gles, which are filled with four colors representing different tissues. Hierarchical clustering results were obtained based on primary metabolic values in four tis-

sues. Corresponding metabolites are listed in Table S1. (b) Statistic of the number of QTLs across the genome. The window size is 4.3 Mb. (c) Enrichment

analysis of Gene Ontology annotation of genes located in two hotspots with significant (P < 0.05) correlations between primary metabolic values and expression

data in 10 lines. BP, biological process; MF, molecular function. (d) Pie plot showing the composition of primary metabolites with QTLs mapped in the hotspot

on chromosome 2 classified according to tissues. (e) Pie plot showing composition of primary metabolites with QTLs mapped in the hotspot on chromosome 6

classified according to tissues. (f) Density plot of R2 (explained phenotypic variation) values of QTLs identified in this study. (g)The legend used for (a), (d), (e)

and (f).
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metabolite were evaluated (Figure 5a). A total of 13% (4.9–
23% in four tissues) of primary metabolites were detected

with significant (P < 0.05) epistatic interaction in different

QTL regions (Figure 5b). Among them, chlorogenic acid (3-

caffeoyl-cis/trans quinic acid)-related loci displayed epi-

static interactions in two tissues, suggesting a conservative

mechanism of metabolic regulation within those two tis-

sues (Figure 5c). Furthermore, chlorogenic acid, quinic acid

and caffeic acid are involved in reversible chemical reac-

tion processes and displayed a higher epistatic effect

(13.1%) in SL tissue and YK tissue than their average epi-

static effect value. Interestingly, larger epistatic effects

were detected in kernel tissues (about 12.5%) than in leaf

tissues (about 4.9%), on average (Figure 5c).

Networks connecting primary metabolites, maize starch

and grain shape traits

To further investigate the relationships between primary

metabolites from each tissue and grain yield (starch con-

tent and grain shape), Pearson correlation coefficients

(PCC) were obtained and presented in Table S5. In total,

there were 299 (75, 49, 79 and 96 in SL, ML, YK and MK,

respectively) significant (P < 0.05) correlations between pri-

mary metabolites and maize starch content or grain shape

traits in the four tissues (Figure 6). In the seedling stage,

almost two-thirds of the significant correlations were posi-

tive and focused on primary metabolites and grain-shape

traits. However, at the ear leaf stage, more than 60% of the

associations were negative and highly enriched between a

subset of primary metabolites (glyceric acid, nicotinic acid,

xylitol, quinic acid, 3-phosphoglyceric acid) and grain

shape and starch content. Chlorogenates (reversibly

biosynthesized from quinic acid and shikimate) have been

regarded as biomarkers for larger kernels in maize (Ca~nas

et al., 2017). In the present study, a negative correlation

was also observed between quinic acid and grain starch

content. Interestingly, 76% (28/37) of the pairwise primary

metabolite–maize starch viscosity correlations were nega-

tive, while 83% (35/42) of the pairwise primary metabolite–
kernel shape trait correlations were positive. Eight primary

metabolites (2-oxoglutaric acid, arginine, glutamic acid,

glutamine, isocitric acid, leucine, 3-caffeoyl-cis quinic acid

and succinic acid) mainly involved in the shikimate path-

way and the biosynthesis of amino acids derived from glu-

tamate exhibited a completely opposite correlation from

maize kernel starch viscosity and shape traits (Table S5).

Furthermore, amino acids derived from glutamate have

also been described as a biological indicator for selection

for high grain yield in maize (Ca~nas et al., 2017). In the MK,

44% (22/50) of the metabolites display positive correlations

with maize starch viscosity characters and kernel shape

traits. To our surprise, another 44% (22/50) of the metabo-

lites have a negative correlation with the kernel test

weight, which indicates that primary metabolite content

may influence maize kernel density. These correlations

were also confirmed by the co-location of QTLs, as shown

in Figure 3(b). However, it is important to note that we can-

not, at present, rule out that correlations between grain

Figure 3. Summary of additive effect of the identi-

fied quantitative trait loci (QTLs).

(a) Bar plot showing the number of QTLs with posi-

tive and negative additive effects. Red bars repre-

sent the cases with a higher metabolite level in

teosinte (i.e. with values greater than zero) and blue

bars represent the cases with higher metabolic level

in Mo17 (with values less than zero).

(b) Distribution of QTLs according to their physical

location across the maize genome (x-axis). The

y-axis represents the value of the additive effect of

each QTL.

© 2019 The Authors
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yield (starch content and grain shape traits) and primary

metabolites are a consequence of pleiotropic effects or of

linkage drag.

Combing multi-tissue transcriptome and genome-wide

association studies to narrow the candidate genes

Genome-wide association studies (GWAS) are an efficient

way to discover genes associated with phenotypes. To

evaluate the accuracy of QTLs discovered by linkage map-

ping in the TM population and in order to narrow down

the candidate genes, we compared these QTLs with the

GWAS results of primary metabolites from a diverse asso-

ciation panel (Wen et al., 2018). As would perhaps be

expected, some degree of consistency was found between

the QTL information we obtained in the TM population and

the association panel. For example, both the tandem ADT

genes (GRMZM2G342895, GRMZM2G121546) encoding

arogenate dehydratase were cloned and their function vali-

dated in a previous study (Wen et al., 2018). In the current

study, we also detected a significant QTL at the same locus

in the TM population (Figure S7). A major QTL accounting

for 31.4% of the variation in GABA content with the favor-

able allele from mexicana was mapped on chromosome 1

(Figure 7a). In the identical region, the ZmGAD gene

(GRMZM5G826838) encoding glutamate decarboxylase

was found by GWAS with six polymorphic markers, one

located in the 50 untranslated (UTR) region and five located

in the 30 UTR region (including the most significant one;

Figure 7b,c). Also, a cis-QTL was identified for the expres-

sion level of ZmGAD (Figure 7d) and significant positive

correlations were observed between the ZmGAD expres-

sion level and the GABA content in the SL (r = 0.31,

P = 1.3 9 10�8) and MK (r = 0.25, P = 4.5 9 10�6) (Fig-

ure 7e). The glutamic acid could be decomposed into

GABA under the function of glutamate decarboxylase (Fig-

ure 7f). These results imply that some primary metabolite

QTL identified in this study may have already been used in

modern maize breeding programs. Modulating gene

Figure 4. The teosinte–maize variation of the primary metabolic network.

For the primary metabolites shown in red, the majority of the identified quantitative trait loci (QTLs) have an additive effect with a value greater than zero (at

least two-fold change between the number of QTLs having an additive effect with value greater than zero and the number of QTLs having an additive effect with

value less than zero). For the primary metabolites shown in blue, the majority of the identified QTLs have an additive effect with value less than zero (at least

two-fold change between the number of QTLs having an additive effect with value less than zero and the number of QTLs having an additive effect with value

greater than zero). Metabolites shown in black did not have a significant difference between QTLs with additive effects greater than and less than zero (less than

two-fold change). Metabolites that are not detected in this study are shown in grey. The color bar represents the proportion of these two kinds of QTL.

© 2019 The Authors
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expression often represents an efficient mechanism for

eliciting quantitative changes in gene function. In order to

gain a better understanding of the regulation of primary

metabolism, RNA sequencing experiments were conducted

on three tissues (i.e. SL, YK and MK) in 10 lines selected

from the TM population (Yang et al., 2017). Correlations

were subsequently calculated between primary metabolite

abundance and gene expression. In total, 2726 transcript–
metabolite correlations involving 63 primary metabolites

and 2009 genes were identified at a permissive significance

threshold of P < 0.05 (Table S4), with 434 of these 2009

genes displaying significantly different (P < 0.05)

expression levels between lines harboring Mo17 and teo-

sinte alleles (Table S4). Co-expressed genes are potentially

involved in the same biological process (Yu et al., 2015).

Thus, to investigate the biological function of these

selected genes, K-means clustering was adopted in order

to classify the genes on the basis of their expression pat-

terns. As a result, nine clusters were identified, comprising

between 87 and 634 genes (Figure S8 and Table S4). Sub-

sequently, GO enrichment analyses were carried out on

the genes of each cluster (Tian et al., 2017). Significantly

enriched GO terms were detected in seven clusters

(P < 0.05). These terms were mainly involved in

Figure 5. Summary of epistatic effects of primary metabolite quantitative trait loci (QTLs) identified in this study.

(a) Circos plot of the maize genome. The olive-colored track indicates the 10 chromosomes. Tick marks appear every 10 Mb on each chromosome. Four tracks

from border to center (red histograms in a light red background, orange histograms in a light orange background, sky-blue histograms in a light sky-blue back-

ground and green histograms in a light green background) represent the number of QTLs detected at each site of the chromosomes for metabolites measured

in seedling leaf, leaf at 15 DAP, young kernel and mature kernel, respectively. In each of the four tracks, outward histograms indicate a QTL having an additive

effect with value greater than zero and inward histograms indicate a QTL having an additive effect with value less than zero.

(b) Statistics of metabolic traits with epistatic effects. Gray bars, number of metabolic traits with one QTL; orange bars, number of metabolic traits with more

than one QTL but no epistatic effects detected; green bar, number of metabolic traits with epistatic effects detected.

(c) Proportion of phenotypic variation explained by all epistatic interactions for each metabolic trait.

© 2019 The Authors
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carbohydrate metabolic process, biosynthetic process, pro-

tein metabolic process and phosphate metabolic process,

but some molecular functions, including transferase activ-

ity, hydrolase activity and structural molecule activity, and

some cellular components also appeared on the GO

enrichment list, which can be found in Table S6. These

data provide interesting hints to help us understand how

this divergence arose and how it can be harnessed to

enhance quality improvement of maize in the future.

DISCUSSION

Metabolomics has recently made several important contri-

butions to our understanding of fundamental aspects of

maize biology, including metabolic responses to climate

change, pathogen attack, microorganism resistance and

dynamic development of plants (Walker et al., 2011; Marti

et al., 2013; Sun et al., 2016; de Abreu e Lima et al., 2018;

Wen et al., 2018). To date, comparisons of the metabolic

differences between cultivated maize and teosinte have,

however, been relatively limited (Flint-Garcia et al., 2009).

In this study, large-scale primary metabolite detection was

conducted in four different tissues of a maize–teosinte pop-

ulation alongside the collection of data on maize kernel

shape traits and maize starch characteristics. This study

revealed the dramatic differences in primary metabolite

content and distribution between maize and teosinte (Fig-

ure 1). Hundreds of genome regions exhibited genetic con-

tributions to the regulation of primary metabolite

accumulation in both leaf and kernel tissues (Figure 2a).

Importantly, the majority of the genetic contributions with

an upregulation effect came from the mexicana alleles (Fig-

ure 3b). Previously, introgression of genome segments

from mexicana into cultivated maize has been documented

to result in large changes in composition of protein content

(Wang et al., 2008). However, this earlier study did not elu-

cidate the genetic mechanism underlying this phe-

nomenon. Also, teosinte appears to have greater

resistance to a number of pests than its cultivated counter-

part (Lange et al., 2014). One previous study showed that

teosinte alleles on chromosome 8 confer increased

Figure 6. Simplified network of primary metabolites and yield-related traits.

Red and blue arrows represent the positive and negative correlations between yield-related traits and primary metabolic trait values, respectively. The light

green backgrounds represent metabolites significantly correlated with yield-related traits in leaf tissues (red arrow, positive correlation; blue arrow, negative cor-

relation) (i.e. seedling leaf and leaf at 15 days after pollination. Light yellow backgrounds represent metabolites significantly correlated with yield-related traits

in kernel tissues (red arrow, positive correlation; blue arrow, negative correlation) (i.e. young kernel and mature kernel). A full list of correlation results is pre-

sented in Table S5.

Abbreviations: HKW, hundred kernel weight; KL, kernel length; KT, kernel thickness; KTW, kernel test weight; KW, kernel width; MSV, maize starch viscosity;

MSC, maize starch content; Asc, ascorbic acid; Asp40, asparagine; Glu69, glucose; Isocit, isocitric acid; Put, putrescine; Qui-caf-trans, quinic acid 3-caffeoyl-trans;

Raf, raffinose; Asp48, aspartic acid; Caf-trans, caffeic acid-trans; Glu55, glutamic acid; Gly42, glycerol; Try53, tyramine; Cit, citric acid; Glu54, glutamine; Gly43, glyc-

eric acid; Pro, proline; Cin-trans, cinnamic acid 4-hydroxy-trans; His, histidine; Pyr, pyruvic acid; Ala, alanine; Cad, cadaverine; OxoGlu, glutaric acid 2-oxo; Leu,

leucine; Tyr49, tyrosine; Val, valine; Mal, malic acid; Fum, fumaric acid; Ino, inositol myo; IsoLeu, isoleucine; Hom, homoserine; Qui, quinic acid. Superscripts

represent the number of signals of the metabolites and detailed information can be found in Table S1.
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resistance to gray leaf spot (Zhang et al., 2017). Teosinte

undergoes more stress than cultivated maize, and it is nec-

essary for teosinte to have stronger resistance to biotic

and abiotic stresses. These advantages are likely to be con-

veyed by proteins and secondary metabolites, which may

benefit from the species’ diverse genetic architecture

(Lange et al., 2014). While initially surprising, the observa-

tion that mexicana alleles have greater power to alter pri-

mary metabolite abundance, based on additive effect

results from primary metabolite QTLs (Figure 4), is per-

haps reasonable. Obviously, the process of maize domesti-

cation and improvement was accompanied with loss of

genetic diversity (Xu et al., 2017) and there are several pos-

sible reasons for this. (i) Genetic drift: modern maize is

derived from landraces, which in turn were domesticated

from teosinte (Shi and Lai, 2015). Due to limitations in the

population size of teosinte and landraces, genetic drift

could have occurred in every generation during these two

processes. (ii) Selection: breeders focus more on the tar-

get traits they are interested in, such as plant morpho-

logical characteristics, grain yield and disease resistance.

This leads to a genetic bottleneck wherein plants with

no advantage in these traits are discarded and allelic

diversity is lost across the genome. Furthermore, genes

influencing target traits may be closely linked with genes

nearby, for example primary metabolite QTLs and grain

yield-related QTLs are co-localized (Figure 3b) so selec-

tion of target traits may influence the gene frequency in

adjacent regions of the genome. (iii) Natural environ-

mental stress: stressful environments can become a

driving force for plants to accumulate more metabolites

as part of the adaptive response (Obata et al., 2015). Cul-

tivated maize has a much better growing environment,

with humans controlling the entire growth cycle, than

that to which its wild relatives were exposed. Therefore,

there is much less impetus for cultivated maize to main-

tain a high allele frequency of genes involved in metabo-

lite biosynthesis and accumulation. Results obtained in

this study supported the consensus that wild relatives

contain valuable germplasm for enhancing the genetic

diversity reduced in the long selection process of maize

domestication and improvement (Lange et al., 2014;

Yang et al., 2017).

Genome research revealed that approximately 2–4% of

maize genes have been influenced in the domestication

process (Wright et al., 2005; Hufford et al., 2012), and sev-

eral genes have completely transformed maize at the level

of whole plant architecture, ear morphology and kernel

structure (Shi and Lai, 2015). In this study, two hotspots

were identified in which tens of primary metabolite QTLs

were co-localized (Figure 2b), implying that the regulation

of primary metabolites is influenced by several key genes.

These two QTL hotspots provide good targets for further

detailed study. It has previously been reported that domes-

tication has significantly changed the expression levels of

hundreds of gene as well as their co-expression networks

(Swanson-Wagner et al., 2012; Huang et al., 2016). Further-

more, many of these differentially expressed genes are

members of such co-expression networks and additionally

annotated with biological functions in response to biotic

Figure 7. ZmGAD (GRMZM5G826838) as the candi-

date gene affecting 4-aminobutyric acid (GABA)

content.

(a) Quantitative trait locus (QTL) mapping result of

GABA content in the Mo17 and teosinte (mexicana)

population (the TM population). (b) Scatterplot of

association results between polymorphic markers

in the GABA QTL confidence interval. Association

analysis was performed using the mixed linear

model controlling for the population structure (Q)

and kinship (K). Six polymorphic markers locate in

the 30 untranslated region (UTR) and 50 UTR region

of ZmGAD, marked with black and red, respectively.

(c) Structure of the ZmGAD gene and linkage dise-

quilibrium plot showing the pair-wise r2 value

among polymorphic sites. Red lines show the posi-

tion of six polymorphic markers mentioned above.

(d) Manhattan plot of expression QTL analysis of

ZmGAD expression. (e) Plot of Pearson correlation

between the normalized expression level of the

ZmGAD gene and the content of GABA in seedling

leaf (SL) and mature kernel (MK). (f) Proposed

GABA metabolic pathway in maize. GAD, glutamate

decarboxylase.
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stimulus (Swanson-Wagner et al., 2012). Intriguingly, sev-

eral primary metabolite hotspots were also identified in a

maize–maize (B73/BY804) population (Wen et al., 2015).

However, they did not overlap with the present two hot-

spots, which reflects the difference in network regulation

between maize and its wild relatives. We believe that this

is due to the evolution of differential regulation of the

metabolic network, and particularly in amino acid metabo-

lism, during domestication. In this vein, it is interesting to

compare our findings with those of two recent studies

which evaluated the domestication of the metabolome in

wheat (Beleggia et al., 2016) and tomato (Zhu et al., 2018).

Interestingly, five amino acids were found to accumulate

with the increase in fruit size during crop improvement in

the case of tomato. The case of wheat, however, is perhaps

more pertinent to our study here, given that it is a far more

similar species to maize than tomato. Beleggia et al. (2016)

revealed that the domestication of emmer (primary domes-

tication) was marked by a reduction in unsaturated fatty

acids while the domestication of durum wheat (secondary

domestication) was, like that of maize, marked by a mas-

sive reduction in amino acid abundance.

By combining metabolome, transcriptome, grain yield

and quality trait data, we were able to comprehensively

dissect primary metabolism using a maize by wild relative

(mexicana) segregating population. We saw the difference

in the maize and teosinte genomes and identified the same

regions to affect the metabolites and grain yield simultane-

ously but with opposite effects. Similar phenomena were

also observed in other crops (Beleggia et al., 2016; Tieman

et al., 2017). Many favorable genes affecting different pri-

mary metabolites were hidden in the genomes of the wild

relatives of maize, suggesting that they may have been lost

during the breeding of maize for high yield. With the inves-

tigation of 895 inbred lines, about 10% of the maize gen-

ome showed evidence of introgression from mexicana;

however, for any given individual the introgression region

was less than 1%, and no identified functions have yet

been determined for these introgression regions (Yang

et al., 2017). These results suggest that some favorable

genes hidden in maize wild relatives may already have

been used in modern maize breeding. Thus, wild relatives

are clearly a great genetic resource for improvement of

maize production and our present findings provide clear

clues for future maize breeding strategies that would allow

us adopt a balanced approach with the aim of maintaining/

enhancing both yield and quality simultaneously.

EXPERIMENTAL PROCEDURES

Plant material

Teosinte (Zea mays ssp. mexicana) was the non-recurrent par-
ent involved in a Mo17–Teo (BC2F7, 191 lines) population (here,
the TM population) construction with Mo17 acting as the

recurrent parent. Briefly, teosinte pollen was crossed onto the
ear filament of an elite maize line Mo17. The progenies were
backcrossed twice with Mo17; the resultant offspring were self-
pollinated until the construction of the TM population was com-
plete. Details of the construction of the population were
described in a previous study (Yang et al., 2017). The TM popu-
lation together with the parent Mo17 were planted at Huazhong
Agricultural University field experiment station (Wuhan,
109°510 E, 18°250 N) in 2015. Each line was planted at random
in a single 3-m-row field plot. Two leaf tissue samples [i.e. the
ninth leaf, 50 days after sowing; ear leaf at 15 days after polli-
nation (DAP)] and YK tissue samples (i.e. kernel at 15 DAP)
were harvested from three living plants in each line; they were
pooled and mixed and then immediately snap-frozen in liquid
nitrogen. For long-term storage, the samples were kept at
�80°C before further processing. The MK tissue samples were
harvested from the dry ears. For quality control, each sample
was taken from three individuals per field plot.

Gas chromatography time-of-flight MS-based

quantification of primary metabolites

Samples were homogenized with a ball mill instrument (MM400,
Retsch, https://www.retsch.com/), pre-cooled with liquid nitrogen.
They were then extracted as previously described (Roessner et al.,
2001; Lisec et al., 2006). Briefly, 700 ll of 100% methanol and 30 ll
of ribitol (0.2 mg ml�1 stock in water) were added to 50 mg of
homogenized powder. Samples were agitated in a shaker at 70°C
for 15 min, then centrifuged at 20 817g for 10 min. The super-
natant was then collected and mixed with 375 ll of chloroform and
750 ll of water. The mixture was then centrifuged for 15 min at
1699g. One hundred and fifty microliters of the upper polar phase
was taken and concentrated to dryness in a vacuum concentrator.
After derivatization, 1 ll of each sample was injected into a gas
chromatography time-of-flight MS system. Gas chromatography
was conducted with a 30-m MDN-35 column. The temperatures of
injection, transfer line and ion source were set at 230°C, 250°C and
250°C, respectively. A library derived from the Golm Metabolome
Database (Kopka et al., 2005) was used to evaluate chromatograms
and mass spectra as well as determine metabolite levels. Relative
quantification for each sample was determined using a unique
selected ion intensity for each metabolite. All primary metabolite
values in four tissues can be found in supplementary data sets
(Table S7, seedling stage leaves; Table S8, ear leaves at 15 DAP;
Table S9, kernels at 15 DAP; Table S10, MKs).

Evaluation of maize starch viscosity

Maize samples were milled and subsequently sifted through a
0.15-mm sieve. Milling was conducted under the same condition
to avoid effects of the moisture content on the rapid viscosity ana-
lyzer (RVA; RVA-TecMaster, Perten Instruments, https://www.perte
n.com/) measurement. The experiment was carried out strictly fol-
lowing the recommended method specific for corn starch. In brief,
distilled water (25 � 0.01 ml) was added to the milled maize flour
sample (3 � 0.01 g) in an aluminum RVA canister. A paddle was
placed in the canister and rotated at 960 r.p.m. for 10 sec to dis-
perse the maize sample. Then a constant paddle rotation of
160 r.p.m. was used for the viscosity evaluation. The sequential
temperature curve for a 13-min test was as follows: (i) incubate at
50°C for 1.0 min; (ii) increase to 95°C using a 3.7°C min–1 incre-
ment; (iii) keep at 95°C for 2.5 min; (iv) cool down to 50°C with a
3.8°C min–1 decrement; (v) hold at 50°C for 2 min. Starch viscosity
characteristics were composed of five primary components (past-
ing temperature, peak viscosity, time to peak, minimum viscosity,
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final viscosity) and two secondary components (breakdown, set-
back) (Table S11). Breakdown values were calculated by subtract-
ing minimum paste viscosity from peak viscosity, while setback
values were calculated by subtracting minimum paste viscosity
from final viscosity.

Measurement of maize kernel traits

Kernel-related traits [i.e. hundred kernel weight, HKW; kernel
length, KL; kernel thickness, KT; kernel test weight (KTW; weight of
250 ml of kernels); kernel width, KW] of the TM population were
collected from three independent and diverse environments
(Henan, Yunnan and Chongqing) with two replications (2011 and
2012). Each line was grown in a single 3-m row with a planting den-
sity of 45 000 plants ha�1. At least three randomly selected plants
in each line were used for collection of kernel-related traits. To
obtain accurate phenotypic values, raw kernel-related phenotypic
data were transformed into best linear unbiased prediction (BLUP)
values based on the lme4 package in the R software environment
(version 3.3.2), and BLUP values were used for subsequent analy-
ses, including QTL mapping and statistical analysis (Table S11).

Determination of total starch content

Total starch (including D-glucose and maltodextrins) was analyzed
using a standard assay procedure (cat. no. K-TSTA, Megazyme,
https://www.megazyme.com/), in which starch was quantitatively
converted to glucose by digestion with a thermostable amylase
and amyloglucosidase (DMSO format, AOAC official method
996.11). In brief, maize starch samples (100 mg, weighed accu-
rately) were dispersed using 0.2 ml of ethanol (80% v/v) and stir-
red on a vortex mixer. Then, 2 ml of DMSO was added to the
sample tube and stirred on a vortex mixer. Samples were incu-
bated in a vigorously boiling water bath for 5 min followed by the
addition of 3 ml of a-amylase enzyme solution (a-amylase enzyme
content 0.1 ml, 3000 U ml�1 at pH 6.5 and 40°C) and incubated in
a vigorously boiling water bath for 6 min. After incubation at
100°C, samples were incubated at 50°C with 0.1 ml of amyloglu-
cosidase (3300 U ml�1) for 30 min. The total sample volume was
accurately adjusted to 100 ml with deionized water, then cen-
trifuged at 1000g for 10 min. The aliquot (0.1 ml) was transferred
into a test tube, 3 ml of glucose determination reagent (GOPOD)
was added, and then incubated at 50°C for 20 min. The absor-
bance of the samples as well as the D-glucose control was read at
510 nm against the reagent blank:

Starch;% ¼ DA
W � F

� FV � 162

180
� 100

100�moisture contentð%Þ

where DA is absorbance read against the reagent blank, F is the
absorbance for 1 lg of standard D-glucose. W is the weight in mil-
ligrams of the analyzed flour, FV is the final volume in milliliters
and 162/180 is a statistical adjustment from free D-glucose to anhy-
dro-D-glucose.

Bin map construction and QTL mapping

Illumina MaizeSNP50 arrays containing 56 110 single nucleotide
polymorphisms (SNPs) were employed for genotyping all the indi-
viduals and their parents. An in-house Perl script (https://github.
com/panqingchun/linkage_map) developed based on Carthagene
software (De Givry et al., 2005) running on the Linux environment
was used for the construction of genetic linkage maps (Pan et al.,
2016). A total of 12 390 SNP markers were classified into 1282
unique bins and each bin was represented by a single marker. The
composite interval mapping (CIM) method was used in QTL

Cartographer software version 2.5 (Wang et al., 2012) for QTL map-
ping analysis with the walk speed set at 0.5 cM. The QTL confi-
dence interval spanned the genomic regions corresponding to one
LOD drop from the peak (Table S12). More detailed information
about bin map construction and QTL mapping information can be
found in our previous studies (Wen et al., 2015; Yang et al., 2017).

Detection of epistatic QTLs for primary metabolites

Pairwise additive by additive epistatic interactions were evaluated
for all QTLs identified from each primary metabolite. Epistatic
interactions were determined by Two-way ANOVA by considering
pairwise markers as two factors to find whether those two loci
have significant (P < 0.05) mutual function (Yu et al., 1997). Epi-
static effects were obtained by comparing the residual of total
effects of single-locus effects and two-locus interaction effects
with all single-locus effects derived from no mutual function
model. Circos was used for visualization of the epistatic results
(Krzywinski et al., 2009).

Statistical analysis and visualization

Statistical analysis and data arrangement were mainly conducted
using scripts written in R software. Pearson correlation coeffi-
cients together with P-values were calculated with the Hmisc pack-
age. Hierarchical cluster analyses were realized with the
agglomeration method of ward.D2. For K-means clustering, deter-
mination of K was made via multiple attempts in order to gain the
optimal classification. A permutation test was used to determine
the threshold value for QTL hotspots. In brief, all QTLs were ran-
domly assigned to the genome. Then, the QTL number of all slide
windows (4.3 cM, average length of QTL confidence intervals) was
recorded. After the 1000-permutation test, the value that was sig-
nificant (P < 0.01) was 10 for 350 QTLs across the genome. This
process was completed with script running in R version 3.3.2.

Gene Ontology enrichment analysis

The GO enrichment analyses were implemented by agriGO v.2.0
(Tian et al., 2017) through the Singular Enrichment Analysis tools
with the Fisher statistical test and Yekutieli multitest adjustment,
with the significance level set at 0.05. The filtered working gene
list together with the gene annotation of maize was downloaded
from MaizeGDB (ftp://ftp.gramene.org/pub/gramene/maizeseque
nce.org/release-5b/filteredset/) (Lawrence et al., 2005).
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population in the ear leaf at 15 days after pollination of each line.
Figure S3. Distribution of metabolite level in the teosinte/Mo17
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Figure S7. The ZmGAD gene (GRMZM5G826838), a candidate
genes affecting 4-aminobutyric acid (GABA) content, is co-loca-
lized on chromosome 1 with linkage mapping and association
analysis in seedling leaf tissue.
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expression values.
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Table S2. List of metabolite–metabolite Pearson correlations in
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pollination in the Mo17–teosinte population.
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