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Abstract—How to mine the gene regulatory relationship and construct gene regulatory network (GRN) is of utmost interest 
within the whole biological community, however, which has been consistently a challenging problem since the tremendous 
complexity in cellular systems. In present work, we construct gene regulatory network using an improved three-phase 
dependency analysis algorithm (TPDA) Bayesian network learning method, which includes the steps of Drafting, Thickening and 
Thinning. In order to solve the problem of learning result is not reliable due to the high order conditional independence test, we 
use the entropy estimation approach of Gaussian kernel probability density estimator to calculate the (conditional) mutual 
information between genes. The experiment on the public benchmark data sets show the improved method outperforms other 9 
kinds of Bayesian network learning methods when to process the data with large sample size, with small number of discrete 
values, and the frequency of different discrete values is about same. In addition, the improved TPDA method was further 
applied on a real large gene expression data set on RNA-seq from a global collection with 368 elite maize inbred lines. 
Experiment results show it performs better than the original TPDA method and other 9 kinds of Bayesian network learning 
algorithms significantly. 

Index Terms—Gene regulatory, Bayesian network, Mutual information, Maize  

——————————      —————————— 

1 INTRODUCTION

ene regulatory networks (GRN) could be inferred 
from expression profiles and interactions between 

regulatory targets. It can help to explain the new function 
of gene and the mechanism of the life process, and pro-
vide important information for drug design or medical-
related fields. 

At present, there exists a lot of research work about in-
ferring gene regulatory network from gene expression 
data [1], [2]. Several methods are introduced into the re-
search of gene regulatory network construction, such as 
differential equation method, boolean model, regression 
method [3], linear programming [4], algebra-based me-
thod [5], distance correlation, motif activity response 
analysis [6], majority rule method, etc. The above ap-
proaches have certain advantages and limitations respec-
tively. For example, the method of boolean model is sim-
ple and straightforward, but it can lead to information 
loss, thus to affect the accuracy of gene network construc-
tion. Differential equation method can better mine the 
continuous dynamic relationships between genes, but it 
cannot deal with the noise of the experiment data [1]. The 
information-theoretic approaches are increasingly used 
for constructing GRNs, such as ARACNE [7], PCA-CMI 
[8], CMI2NI [9], etc. However, the information-theoretic 

based method cannot determine the direction of regulato-
ry relationship, and it cannot calculate the regulatory rela-
tionship among multiple genes. Recently, machine learn-
ing methods are more and more used to mine gene regu-
latory relationships [10].  

At present, Bayesian network is more and more used 
in the research of gene regulatory relationship mining. 
The commonly used Bayesian network structure learning 
method mainly includes the dependence analysis based 
method and search scoring based method. The related 
research work mainly includes Greedy Search (GS) [11], 
[12], Markov Chain Monte Carlo (MCMC) [13], Hill 
Climbing (HC) [14], K2 [15], etc. In addition, the dynamic 
Bayesian network is also used to analyze the temporal 
gene expression data [2], [16]. Recently, the prior know-
ledge is used to improve the learning efficiency and accu-
racy of Bayesian network method, such as using the coci-
tation in PubMed and schematic similarity in Gene On-
tology [13]. In all, the existing research work mainly uses 
the search scoring based Bayesian network learning me-
thod. This method often uses the local or random search 
strategy, and it is a combinatorial explosion problem with 
the increase of the node number, resulting in a long time 
to build the network. 

Compared with the search scoring based Bayesian 
network learning method, the learning efficiency of de-
pendence analysis based method is relatively high, and it 
can obtain the global optimal solution. The three-phase 
dependency analysis algorithm (TPDA) is a commonly 
used dependence analysis based Bayesian network struc-
ture learning method [17]. This algorithm uses the global 
search strategy, and it can quickly determine the relation-
ship between nodes by computing the mutual informa-
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tion or conditional mutual information. Its learning effi-
ciency is higher than the search scoring based methods. 
Therefore, we use the three-phase dependency analysis 
Bayesian network learning method to construct the gene 
regulatory network in this work. However, this method 
uses the conditional mutual information and open path 
judgment to do the conditional independence test, the 
learning result is often not reliable due to the high order 
conditional independence test. At the same time, in the 
view of the transcriptome data is often subjected to the 
normal distribution [8], [9], we use the entropy estimation 
approach of Gaussian kernel probability density estima-
tor to calculate the mutual information and conditional 
mutual information between genes in the TPDA method. 
It can effectively solve the problem of result is unreliable 
caused by high order conditional independence test. For 
the discrete values, the experiment on the public bench-
mark data sets show our improved TPDA method per-
forms best when to process the data with large sample 
size, with small number of discrete values, and the fre-
quency of different discrete values is about same. In addi-
tion, experiments on real maize data set show the im-
proved TPDA method outperforms other 9 kinds of Baye-
sian network learning algorithms. We develop the source 
code about the improved TPDA method using R. 

2 METHODS 
2.1 Bayesian Network 
Bayesian probability denotes the confidence of an event 
occurrence. It is the foundation of Bayesian network, 
which is called as belief network. A complete Bayesian 
network includes three parts: nodes, edges between 
nodes and the conditional probability of all the nodes.  

The three-phase dependency analysis algorithm 
(TPDA) is a commonly used dependence analysis based 
Bayesian network structure learning method. The con-
crete process of TPDA method mainly includes three 
steps: Drafting, Thickening and Thinning  [17].  

2.2 Gene Regulatory Relationship Mining 

Algorithm 1. Gene regulatory relationship mining 
Input: G={gei, 1≤i≤gnum}, M={mj, 1≤j≤mnum}, GM={gmij, 

1≤i≤gnum, 1≤j≤mnum}, NOL 
Output: graph 
1: i, j, vij, cvij←0, S, R, Cutset, Cutsetmin←∅ 
2: Node[] nodes←new Node [gnum] 
3: graph←new Graph(nodes, gnum) 
4: for i=1 to gnum do 
5:    graph.nodes[i]←gei 
6: end for 
7: for i=1 to gnum do 
8:    for i=1 to gnum do 
9:      vij←MI(gmi, gmi) 
10:     if(vij >ε) then 
11:       S←S∪<gei, gej, vij> 
12:     end if 
13:  end for 

14:S←Sort(S)//Sort S according to MI(gmi, gmj) 
15:for all <gei, gej, MI(gmi, gmj) in S do 
16:  if(ExistsPath(gei, gej)) then  
17:      R←R∪<gei, gej> 
18:  else graph.insert(new Edge(gei, gej)) with NOL  
19:end for 
20: for all <gei, gej> in R do 
21:      Cutset←FindCutSet(graph, gei, gej)  
22:      vij=CMI(gei, gej | Cutset) 
23:         if(vij>ε) then 
24:            graph.insert(new Edge(gei, gej)) with NOL 
25:         end if 
26:      Cutset←∅ 
27: end for 
28: for all Edge(gei, gej) in graph do 
29:      delete Edge(gei, gej) 
30:      Cutsetmin←FindMinCutSet(graph, gei, gej) 
31:      cvij=CMI(gei, gej | Cutsetmin) 
32:         if(cvij>ε) then 
33:            graph.insert(new Edge(gei, gej)) with NOL 
34:         end if 
35:     Cutsetmin←∅ 
36: end for 
37: return graph 
In the Input, G represents the gene set, M represent the 

sample set, GM represents the expression data of all the 
genes in G, NOL represents the order of all the nodes. In 
the algorithm, step 7-19 is used to construct the initial 
Bayesian network (Drafting), step 20-27 is used to judge 
the conditional independence (Thickening), and step 28-36 
is used to do the network optimization (Thinning).  

(1) Initial Bayesian network construction (Drafting) 
The mutual information MI(gei, gej) between any two 

genes gei and gej will be calculated firstly. The edges 
whose mutual information is larger than the threshold 
will be inserted into an edge set named S. Then we sort all 
the node pairs in S according to the value of mutual in-
formation. All the node pairs in S are judged whether 
there exists an open path between the corresponding 
nodes or not. If there exists an open path, the node pair 
will be inserted into another edge set named R. Otherwise, 
we will insert the corresponding edge into the graph, thus 
to construct the initial network. The direction of the edge 
is determined by the node order in NOL. 

For the discrete variables in X and Y, we can define MI 
in term of probability and entropies, as shown in Eq.(1). 

,

( , ) ( ) ( ) ( , )

( , )
( , ) log

( ) ( )x X y Y

MI X Y H X H Y H X Y

p x y
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= + −

= − 
                   (1) 

As has been described above, we use the entropy esti-
mation approach of Gaussian kernel probability density 
estimator to calculate the mutual information between 
genes to solve the above problem [8], [9]. We can get the 
entropy of variable X, as shown in Eq.(2).  

         /2 1/2 1
( ) log[(2 ) | | ] log(2 ) | |

2
n nH X e C e Cπ π= =            (2) 

For gene gei and gej, we use Eq.(3) to calculate the mu-
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tual information MI(gei, gej).  
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(2) Conditional independence judgement (Thickening) 
On the basis of constructing the initial network 

through Drafting, we judge the node pair of R in turn us-
ing the conditional independence test. From the aspects of 
non-transfer connection, serial (transfer) connection and 
convergence connection, we get the minimum cut set cut-
set which can D-separate the node pair of R in turn.  

It calculates the conditional mutual information (CMI) 
between the node pair in R and the corresponding mini-
mum cut set, and thus to judge whether the node pair is 
conditional independent or not. The CMI of variables X 
and Y given Z is defined using Eq.(4).  

( , | ) ( , ) ( , ) ( ) ( , , )CMI X Y Z H X Z H Y Z H Z H X Y Z== + − −     (4) 
Similarly, we can use CMI to measure the conditional 

dependence between two variables (genes) given other 
variables (genes), as shown in Eq.(5). 
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In Eq.(5), gei and gej represent two genes, cutset 
represents the minimum cut set, C represents the cova-
riance matrix of gene expression, |C| represents the de-
terminant of matrix C. 

(3) Network optimization (Thinning) 
This stage will check each edge e in graph to achieve 

the further optimization in the network. Supposing two 
genes of e is (gei, gej), if there exists an open path which 
connects gei and gej except for e, we remove e temporarily 
and find the minimum cut set that can D-separate gei and 
gej. Then we use Eq.(5) to judge whether the node pair is 
conditional independent or not. If it is independent, then 
we delete e. 

 3 RESULTS 
The bnlearn is an R package of learning the structure of 
Bayesian networks, estimating the parameters and per-
forming Bayesian inference. This package does not in-
clude the three-stage dependency analysis algorithm. We 

use R to develop the source code of the improved TPDA 
algorithm in this work. We use other 9 kinds of Bayesian 
network learning methods (including gs, hc, iamb, mmpc, 
rsmax, tabu, fastiamb, interiamb, mmhc) to construct gene 
regulatory network, and thus to compare these methods 
with our improved TPDA method. The experiment is car-
ried out on the computer with the configuration of dual 
Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz, and 128G 
memory.  

3.1 Learning effect comparison of different 
methods 
We use the benchmark data set to validate the Bayesian 
network learning methods, including Alarm, Child, Insur-
ance, Barley, Mildew, etc(http://www.dsl-
lab.org/supplements/mmhc_paper/mmhc_index.html) 
[18]. The Alarm, Child, Insurance and Hailfinder contain the 
data sets of Type-1, Type-3 and Type-5. Each data set con-
tains 10 versions of data at each sample size (500, 1000, 
5000), such as Alarm-1-500v1~Alarm-1-500v10. We use 
Eq.(6) to calculate the learning precision, Numtotal denotes 
the total number of edges in the Bayesian network that 
has been learned. Nummatch denotes the common number 
of edges between the learning Bayesian network and the 
standard network in the benchmark data set. 

Pr match

total

Num
ecision

Num
=                              (6) 

In the case of setting the threshold in the Drafting stage 
to 0.06, and setting the threshold of Thickening and Thin-
ning to 0.04, we use 10 kinds of Bayesian network learn-
ing methods (gs, hc, iamb, mmpc, rsmax, tabu, fastiamb, inte-
riamb, mmhc and TPDA) to construct the gene regulatory 
network of the above benchmark data sets. Fig. 1-11 show 
the learning precision comparison of 10 kinds of Bayesian 
network learning methods about all the benchmark data 
sets, including Alarm-1, Alarm-3, Alarm-5, Child-1, Child-3, 
Child-5, Insurance-1, Insurance-3, Insurance-5, Barley and 
Mildew. In order to ensure the learning precision of the 
experiment comparison, we take the average precision of 
10 versions of each data set to do the comparison and 
analysis.  

     
Fig. 1. Learning precision comparison of different methods (Alarm-1) 
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Fig. 2. Learning precision comparison of different methods (Alarm-3) 

     
Fig. 3. Learning precision comparison of different methods (Alarm-5) 

     
Fig. 4. Learning precision comparison of different methods (Child-1) 

     
Fig. 5. Learning precision comparison of different methods (Child-3) 

     
Fig. 6. Learning precision comparison of different methods (Child-5) 
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Fig. 7. Learning precision comparison of different methods (Insurance-1) 

     
Fig. 8. Learning precision comparison of different methods (Insurance-3) 

     
Fig. 9. Learning precision comparison of different methods (Insurance-5) 

     
Fig. 10. Learning precision comparison of different methods (Barley) 

     
Fig. 11. Learning precision comparison of different methods (Mildew) 

Through Fig. 1-11, we can see the learning precision of 
different methods is different for the particular data set. We 
can see the learning precision of hc and tabu is lower than 
the other 8 kinds of methods apparently. When the sample 
number of all the data sets is taken 5000, we can see the 
learning precision of our TPDA method is better than the 
sample is taken 500 and 1000. It means our TPDA method is 

suitable for processing the data with large sample size. For 
the data sets of Alarm-1, Alarm-3 and Alarm-5, the learning 
effect of our improved TPDA method is all most the same as 
other methods when the data sample size is 500 and 1000. 
But when the sample is 5000, the learning precision of our 
improved TPDA method is enhanced obviously. 

In addition, there are large differences of learning pre-
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cision about the specific method for different data sets. 
For the data sets of Child-1, Child-3, Child-5, Insurance-1, 
Insurance-3 and Insurance-5, when the sample is taken 
5000 especially, the learning precision of the TPDA me-
thod is much higher than other methods basically. In Fig. 
10 and Fig. 11, we can also see the learning precision of 
TPDA on the data sets of Barley and Mildew is far less than 
the data sets of Alarm, Child and Insurance. Compared 
with other 9 kinds of methods, the learning effect of 
TPDA on the data sets of Barley and Mildew has no ob-
vious advantages. 

Attempting to analyze the impact of different data sets 
for our improved TPDA method, we analyze the distribu-
tion of the data sets of Alarm-3, Child-3, Insurance-3, Barley 
and Mildew. We randomly select the v3 version of these 
data sets to do comparison and analysis, the result is 
shown in Fig. 12-14.  

 
Fig. 12. Data distribution of Barley_Mildew_v3 

 
Fig. 13. Data distribution of Child-3_Insurance-3_Alarm-3_v3 

 
Fig. 14. Data distribution of Child-5_Insurance-5_Alarm-5_v3 

Through Fig. 12-14 we can see the distribution of 

different data sets is largely different. In Fig. 12, the 
distribution of the data sets of Barley and Mildew is 
consistent. The number of discrete value in the two 
data sets is very large, as many as 80 kinds, and the 
frequency of different discrete values is largely differ-
ent. In Fig. 13-14, compared with the data sets of Barley 
and Mildew, the distribution of the Alarm, Child and 
Insurance is relatively similar. The number of discrete 
values in these data sets is less. In addition, we can see 
the classification frequency of the two main discrete 
values is higher in the data sets of Child and Insurance, 
and their frequency is almost identical. But the classifi-
cation frequency of the main discrete values in the data 
set of Alarm is largely different. In this data set, the 
frequency of one discrete value is significantly higher 
than the others.  

In combination with the results in Fig. 1-11, the learn-
ing effect of our improved TPDA method is not good for 
the data sets of Barley and Mildew, and its learning effect 
is best for the data sets of Child and Insurance. For the data 
set of Alarm, the learning effect of TPDA method becomes 
better when the sample size becomes more and more 
(500-5000). It is concluded that our improved TPDA me-
thod is suitable for processing the data with large sample 
size, with small number of discrete values (such as two 
values), and with the frequency of different discrete val-
ues is about same. It is not suitable for processing the data 
with more discrete values and with large frequency dif-
ference of discrete values 

3.2 Learning effect comparison of improved TPDA 
In this experiment, we take the dataset of Insurance as 

example to do comparison and analysis. Fig. 15-17 show 
the learning precision comparison of the two methods 
about the data sets of Insurance-1, Insurance-3 and Insur-
ance-5. In order to ensure the learning precision compari-
son, we take the average precision of 10 versions of each 
data set to do the comparison and analysis.  In Fig. 15-17, 
T1~T10 in X axis refers to different thresholds set in the 
three stages respectively, as shown in the following: 
(0.04,0.055), (0.04,0.06), (0.045,0.055), (0.05,0.055), 
(0.05,0.06), (0.055,0.055),  (0.06,0.055), (0.065,0.055), 
(0.065,0.06), (0.065,0.065). In the form of (X, Y), X refers to 
the threshold set in the stage of Drafting. Y refers to the 
threshold set in the stages of Thickening and Thinning. 

Through Fig. 15-17, we can see the learning preci-
sion of the two methods is largely different for differ-
ent data sets. And the learning precision of them is 
different for the same data set. In all, the learning effect 
of using the entropy estimation approach of Gaussian 
kernel probability density estimator is better than 
without using it except for the data set of Insurance-1-
5000. In addition, we can see the learning precision gap 
between the two methods is relatively large for the 
data set of Insurance-3 and Insurance-5. For the data set 
of Insurance-1, there is little difference in the gap of the 
two methods. 
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Fig. 15. Learning precision comparison of improved TPDA (Insurance-1) 

     
Fig. 16. Learning precision comparison of improved TPDA (Insurance-3) 

     
Fig. 17. Learning precision comparison of improved TPDA (Insurance-5) 

3.3 Maize Expression Data Experiment 
We have assembled a global maize germplasm collection 
with 368 elite inbred lines (Association Mapping Panel, 
AMP). We have got the expression data of 28,679 genes 
[19]. Please visit http://www.maizego.org/ or 
http://modem.hzau.edu.cn/ [20] to get the detailed in-
formation of the data set. We have used the biostatistics 
methods to calculate the p-value between every two genes 
according to the gene expression of maize, and select the 
top 189 gene regulatory relationships to do the compari-
son and analysis. These 189 gene regulatory relationships 
are stored in the file of gene_links (see supplemental ma-
terial), which involves about 39 genes. 

(1) Learning effect comparison of different thresholds 
In the case of setting different thresholds in the three 

stages of TPDA, we compare the learning effect when to 
set different thresholds, as seen in Table 1. X denotes the 
threshold in the stage of Drafting, and Y denotes the 
threshold that is set in the stages of Thickening and Thin-
ning.  

Similarly, Precision=Nummatch/Numtotal is used to do the 
precision calculation. Numtotal denotes the total number of 
edges in the learning Bayesian network. Nummatch denotes 
the common edge number in the learning Bayesian net-
work and the gene regulatory relationships in the above 
mentioned gene_links (see supplemental material). 

TABLE 1 

 Learning Results of Different Thresholds on Real Maize Data Set 

             X 
Y 

0.06 0.07 0.08 0.09 0.1 0.2 0.3 

0.01 110/165=0.667 102/150=0.68 93/132=0.705 88/117=0.752 77/98=0.786 20/21=0.952 9/9=1
0.02 60/100=0.6 57/95=0.6 54/88=0.614 53/79=0.671 49/70=0.7 19/20=0.95 1 
0.03 50/73=0.685 46/69=0.667 45/68=0.662 43/64=0.672 40/57=0.702 18/19=0.947 1 

Obviously, the TPDA method has different learning ef-
fect when to set different thresholds. It has relative better 
learning effect when to set the threshold of Drafting stage 
to 0.1, and set the threshold of Thickening and Thinning to 
0.01. 

(2) Learning precision comparison of different me-
thods 

In the case of setting the threshold in the Drafting stage 
to 0.1, and setting the threshold of Thickening and Thin-
ning to 0.01, we use 10 kinds of Bayesian network learn-
ing methods to construct the gene regulatory network of 
the above mentioned 39 genes. The learning result is 
shown in Table 2.  
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TABLE 2 

Learning Precision Comparison of Different Methods 

Methods TPDA gs hc iamb mmpc rsmax tabu fastiamb interiamb mmhc
Total edge number 98 25 70 51 34 24 70 54 52 33 
common edge with gene_links 77 9 44 26 16 9 44 32 29 16 
Precision 0.786 0.36 0.6286 0.5098 0.4706 0.375 0.6286 0.5926 0.5577 0.4848

Compared with other 9 kinds of Bayesian network learn-
ing methods, our improved TPDA method can learn more 
number of gene regulatory relationships in gene_links. The 
total edge number and the common edge number with 
gene_links of our improved TPDA is the maximum, and thus 
the learning precision of this method is the largest of all. The 
TPDA method can get 98 gene regulatory relationships in 
total, the common edge number with gene_links is 77, ac-
counting for 78.6% of the total number of learning results, 
accounting for 41% of the total edge number in gene_links. 

4 CONCLUSION 
Mine the gene regulatory relationships and constructing 
gene regulatory network (GRN) is a challenging and signifi-
cant research problem in biological studies. In this work, we 
use an improved three-phase dependency analysis (TPDA) 
Bayesian network learning method to construct the gene 
regulatory network. It mainly uses the entropy estimation 
approach of Gaussian kernel probability density estimator to 
calculate the (conditional) mutual information between 
genes. The data set of public benchmark and our maize 
global germplasm are used to do the validation of the im-
proved method. For the discrete values in the benchmark 
data set, the experiment results show our TPDA method is 
suitable for processing the data with large sample size, with 
small number of discrete values, and the frequency of differ-
ent discrete values is about same. The experiment results 
about the real maize data set show the improved TPDA 
method performs better than other 9 kinds of Bayesian net-
work learning algorithms, and it shows better learning preci-
sion than the original TPDA method. 
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