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Plant architecture is a key factor affecting planting density and grain yield in maize (Zea mays). However, the genetic
mechanisms underlying plant architecture in diverse genetic backgrounds have not been fully addressed. Here, we
performed a large-scale phenotyping of 10 plant architecture-related traits and dissected the genetic loci controlling these
traits in 10 recombinant inbred line populations derived from 14 diverse genetic backgrounds. Nearly 800 quantitative trait
loci (QTLs) with major and minor effects were identified as contributing to the phenotypic variation of plant architecture-related
traits. Ninety-two percent of these QTLs were detected in only one population, confirming the diverse genetic backgrounds of
the mapping populations and the prevalence of rare alleles in maize. The numbers and effects of QTLs are positively associated
with the phenotypic variation in the population, which, in turn, correlates positively with parental phenotypic and genetic
variations. A large proportion (38.5%) of QTLs was associated with at least two traits, suggestive of the frequent occurrence of
pleiotropic loci or closely linked loci. Key developmental genes, which previously were shown to affect plant architecture in
mutant studies, were found to colocalize with many QTLs. Five QTLs were further validated using the segregating populations
developed from residual heterozygous lines present in the recombinant inbred line populations. Additionally, one new plant
height QTL, qPH3, has been fine-mapped to a 600-kb genomic region where three candidate genes are located. These results
provide insights into the genetic mechanisms controlling plant architecture and will benefit the selection of ideal plant
architecture in maize breeding.

Maize (Zeamays) is themost widely grown grain crop
worldwide and has become one of the most important
crops for food, animal feed, and bioenergy production.
Maize grain yield in the United States has increased
8-fold in the past 80 years, of which half was the result
of breeder selection (Duvick, 2005). Although high
grain yield per hectare is a primary breeding goal, these
increases in grain yield are predominantly due to
higher plant density (Duvick, 2005). In the United
States, the average plant density of maize has increased
from 30,000 plants per hectare in the 1930s to more than
80,000 plants per hectare currently, which has been
accompanied by a change in maize plant aboveground

architecture, especially maize leaf angle, which has
become significantlymore upright (Duvick, 2005). Ideal
plant architecture in high-plant-density maize produc-
tion can optimize canopy architecture, improve photo-
synthetic efficiency, and prevent lodging, thus resulting
in overall high grain yield.

Here, plant architecture primarily refers to the
aboveground parts of maize. It is a function of numer-
ous specific traits, such as plant height (PH), ear height
(EH), tassel branch number (TBN), tassel main axis
length (TMAL), leaf length (LL), leaf width (LW),
middle leaf angle (MLA), leaf number above ear
(LNAE), leaf number blow ear (LNBE), and ear leaf
number (LN), etc. As breeder selection for plant density
leads to increased leaf angle, leaf size, and tassel size
and angle, these traits have been optimized, allowing
light to penetrate into the aboveground canopy with
considerable yield advantages (Pepper et al., 1977;
Fischer et al., 1987; Begna et al., 1999). All of the
aboveground parts ofmaize plants are derived from the
shoot apical meristem (SAM) and its derivative inflo-
rescence meristem. The maintenance and differentia-
tion of the SAM have been reported to determine the
morphology of plant aboveground parts (Thompson
et al., 2015). The developmental origination of all plant
architecture traits explains their high correlations with
each other. Previous mutant studies on the SAM indi-
cate that multiple genes, especially homeobox genes,
their interaction, as well as phytohormone genes, are
involved in the regulation of meristem identity and
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differentiation (Barton, 2010). Therefore, plant archi-
tecture exhibits quantitative variation with complex
genetic mechanisms. Although clarifying the genetic
basis of these traits is still challenging, the genetic dis-
section of plant architecture will improve breeding for
yield at high plant density and, thus, lead to continued
maize productivity improvement.
Hundreds of quantitative trait loci (QTLs) related to

plant architecture traits have been identified (http://
www.maizegdb.org/data_center/qtl-loci-summary).
Tian et al. (2011) performed a genome-wide associa-
tion study (GWAS) of leaf architecture in the maize
nested association mapping (NAM) population and
demonstrated that the genetic basis of the leaf traits
is dominated by small effects with little epistasis,
environmental interaction, or pleiotropy. Peiffer et al.
(2014) dissected the genetic basis of maize height in
maize NAM populations and revealed that maize
height is under strong genetic control and has a highly
polygenic genetic basis. Li et al. (2016) employed a te-
osinte introgression population, conducted a compre-
hensive genetic dissection on leaf number and its
genetic relationship to flowering time, and demon-
strated that these traits are under relatively indepen-
dent genetic control. Genes such as teosinte branched1,
teosinte glume architecture1, dwarf plant3, dwarf plant8,
dwarf plant9, nana plant1, and brachytic plant2 have been
cloned, and their regulation of flowering time and plant
height was explained at the molecular level (Winkler
and Helentjaris, 1995; Doebley et al., 1997; Multani
et al., 2003;Wang et al., 2005; Lawit et al., 2010; Hartwig
et al., 2011). However, functional alleles of many of the
genes associated with plant architecture have been al-
ready fixed in maize elite germplasm, limiting their use
in maize improvement. Most previous genetic studies
focused on single or a few plant architecture traits and
lacked power to dissect plant architecture traits as a
whole. Bouchet et al. (2017) assessed the genetic basis of
24 correlated maize traits and identified major pleiop-
tropic effects and/or linkage for plant architecture traits
in one population with 336 lines, which, however, only
represents a small proportion of the genetic diversity in
maize. Despite this progress, the genetics of plant
architecture-related traits in maize have not been fully
investigated in multiple diverse genetic backgrounds.
To this end, we constructed 10 recombinant inbred line

(RIL) maize populations, designated as an random-open-
parent association mapping (ROAM) population (Xiao
et al., 2016, 2017), conducted large-scale phenotyping on
10 plant architecture traits, and performed a compre-
hensive genetic dissection of plant architecture in maize.
Approximately 800 QTLs with major and minor effects
were identified across 10 diverse genetic backgrounds in
maize. Both pleiotropic and linked QTLs were detected,
which, to a large extent, explains the high correlations
between plant architecture traits. The phenotypic differ-
ences between the two parents for each of the 10 maize
RIL populations were shown to be associated with the
phenotypic diversity and the number of QTLs detected
within populations, indicating that Mendelian effects

contribute predominantly to phenotypic variation in the
progeny. Additionally, residual heterozygous line (RHL)
family analyses validatedfiveQTLs andfine-mapped one
plant height QTL to the 600-kb genomic region, con-
firming the robustness of our analysis. All of these results
further our understanding of plant architecture variation
and provide selection loci for further progress toward the
ideal maize plant architecture.

RESULTS AND DISCUSSION

Large-Scale Phenotyping Reveals Complex Relationships
among Plant Architecture-Related Traits in Maize

The ROAM population was developed, consisting of
10 RIL populations derived from 14 elite maize inbreds,
for a total of 1,887 RIL lines (Pan et al., 2016; Xiao et al.,
2016). These 14 elite maize inbreds were selected from a
large association mapping panel and exhibited exten-
sive genetic diversity (Yang et al., 2011; Supplemental
Fig. S1). We phenotyped the ROAM population at five
to 12 locations for 10 aboveground traits, PH, EH, TBN,
TMAL, LL, LW, MLA, LNAE, LNBE, and LN, mea-
suredmanually (Fig. 1A; see “Materials andMethods”).

Best linear unbiased prediction (BLUP) analyses
revealed extensive phenotypic variation (Fig. 1B;
Supplemental Table S1). All 10 traits exhibited normal
distributions, with a 2- to 10-fold difference between the
smallest and largest lines in the RIL populations (Fig.
1B; Supplemental Table S1; Supplemental Fig. S2). TBN
had the most dramatic variation, with a 10-fold change
(the smallest and largest tassel numbers are two and 20,
respectively; Fig. 1B; Supplemental Table S1). Tassel
size is a key factor associated with maize grain yield
(Duvick, 2005). A smaller tassel is frequently associated
with higher yield; however, hybrid production would
be affected if the tassel were too small (Hunter et al.,
1969). The dramatic TBN variation in the ROAM pop-
ulation might allow a large flexible selection of optimal
tassel size. And leaf angle had the second most exten-
sive variation of ;4-fold change, while the other eight
traits had less than 3-fold phenotypic variations (Fig.
1B; Supplemental Table S1). Meanwhile, the broad
sense heritability of all 10 plant architecture-related
traits ranged from 0.9 to 0.95 (Table I), which is signif-
icantly higher than that (0.76–0.87) of grain yield-related
traits (Xiao et al., 2016). The extensive phenotypic var-
iation and high heritability suggest that these 10 RIL
populations have a diverse genetic background and are
suitable for dissecting the genetic factors underlying
plant architecture-related traits in maize.

Plant architecture exhibits quantitative variation,which
is sensitive to environment. Even for a specific genotype,
plant individuals may show extensive phenotypic varia-
tions due to both genetic variation, such as new muta-
tions, and environmental changes (Zhang, 2008; Fraser
and Schadt, 2010). Although plant architecture traits had
pretty high heritability, a fraction of phenotypic variations
were derived from environmental effects. The environ-
mental effects of phenotypic variations for all 10 plant
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architecture traits vary from 2.2% to 13.3% (Supplemental
Table S2). Additionally, a significant effect of genotype by
environment was observed (Supplemental Table S2).

Analyses showed that the 10 plant architecture-
related traits are significantly correlated with each

other, with each trait correlating with one to six other
traits (Fig. 1C; Supplemental Table S3). We detected a
total of 45 correlations among the 10 traits, the majority
(43) of which are positive associations, except the two
correlations between LL and LW or LNBE (Fig. 1C;

Figure 1. Extensive phenotypic variation of plant architecture inmaize. A, Diagram of themeasured 10 plant architecture traits in
our study: PH, EH, TBN, TMAL, LNAE, LNBE, LN, LL, LW, and MLA. B, Phenotypic variation of five plant architecture traits. C,
Relationships among 10 architecture traits. Red lines designate positive correlations between two traits, and blue lines designate
negative correlations. The correlations with P , 1.0E-15 are shown. The circle size shows the number of correlated traits. D,
Phenotypic tree of all 10 plant architecture traits. The scale represents Euclidean distance, which was calculated based on the
standardized phenotypic data across 10 RIL populations.
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Supplemental Table S3). We performed a phenotypic
clustering analysis based on the phenotypic variation
across the 10 RIL populations (Fig. 1D). A phenotypic
tree of all 10 plant architecture traits was constructed
based on the clustering analysis (see “Materials and
Methods”) and demonstrated high correlations as well as
an extensive phenotypic variation among plant architec-
ture traits. This classified the 10 plant architecture traits
into three unrooted groups (Fig. 1D). The biggest cluster
includes eight measured traits, PH, EH, LL, LW, LN,
LNAE, LNBE, and TMAL. All aboveground parts of
maize plants are derived from SAM and its derivative
inflorescence meristem (Barton, 2010). Recent studies
have uncovered phenotypic correlations between meri-
stem morphology and adult plant traits, revealing links
between the undifferentiated and differentiated plant or-
gans (Thompson et al., 2015). Additionally, Baute et al.
(2015) revealed that the whole SAM traits are correlated
with mature plant morphology-related traits. The similar
origination of all aerial morphology traits may be the
developmental factor that classifies these eight traits into
one highly correlated phenotypic cluster.
Of particular interest, MLA and TBN are singletons in the

clustering analysis, suggesting that these two traitsmayhave
adistinct genetic contribution toplant architecture compared
with traits in thebiggest cluster. Interestingly, these two traits
also have the largest phenotypic variation in the mapping
population. As plant density has increased, leaves have be-
comemore upright and TBNhas been reduced dramatically
to optimize light penetration into the plant canopy, sug-
gesting that TBN and MLA are the important selection tar-
gets duringmaize improvement (Fischer et al., 1987; Russell,
1991; Andrade et al., 1993). Most of the parents of these
10 RIL populations are elite inbreds from different breeding
programs. TBN andMLA,which have themost phenotypic
variation, reflect the genetic diversity in our mapping pop-
ulations. The extensive and continuous phenotypic variation
of these two traits and their divergence from the major
phenotypic cluster indicate that there were many different
loci with rare alleles each contributing a small amount of
variation for TBN and MLA in maize.

Genetic Dissection of Plant Architecture Uncovered
Hundreds of QTLs with Major and Minor Effects That
Contribute to Phenotypic Variation

To dissect the genetic mechanisms underlying plant
architecture in maize, single linkage mapping (SLM),

joint linkage mapping (JLM), and GWAS were
employed to map the QTLs underlying phenotypic
variation. While SLM identified QTLs in each RIL
population, JLM and GWAS identified QTLs or single-
nucleotide polymorphisms (SNPs) by a joint analysis of
all 10 populations using an integrated high-density
map. Hundreds of consistent QTLs were identified
through all three genetic algorithms (Table I; Fig. 2;
Supplemental Figs. S3–S12).

Through the SLM method, a large number of QTLs
ranging from 64 to 83 were identified for each plant
architecture trait. In total, 752 QTLs were uncovered for
the 10 traits across 10 RIL populations, indicative of the
complexity of maize plant development (Table I).
Of these 752 QTLs, 23.2% have an effect of more than
10% of phenotypic variation (Supplemental Table S4;
Supplemental Fig. S13). The proportion of QTLs with
an additive effect greater than 10% ranged from 16% to
31% (Supplemental Fig. S14), suggesting that a few
major genetic factors with large effects alongwithmany
genetic factors with marginal effects contribute to the
phenotypic variation of maize plant architecture. QTL
comparison among different RIL populations shows
that a large proportion (ranging from 57 to 76) of QTLs
could only be identified in one population, while a very
small (from three to 12) proportion of QTLs can be
uncovered simultaneously in at least two populations.
This observation confirmed that our ROAM has an
extensive genetic diversity. For example, out of the
83 QTLs associated with plant height across the 10 RIL
populations, only seven could be detected in at least
two populations. Interestingly, the number of QTLs
detected in only a single population was significantly
more than those detected in multiple populations (x2

test, P = 1.1E-26), but there was no difference for QTL
effects (ANOVA, P = 0.15). These results suggest that a
large number of rare genetic factors play an important
role in the phenotypic variation in maize.

Using the JLMmethod, wemapped 50 to 96 QTLswith
R2 ranging from 0.31% to 4% for each trait. Concordant
with the results of SJM, the majority QTLs detected by
the JLM method are unique to a single population
(Table I; Supplemental Table S5). Compared with SLM,
the resolution of JLM reached up to 1.2 Mb, which was
significantly smaller than the resolution of 3.4 Mb
achieved by SLM (P, 2.0E-16; Supplemental Fig. S15).
Through GWAS, we mapped nine to 43 significant
SNPs associated with plant architecture traits (Table I).

Table I. Summary of heritability and QTLs or SNPs identified by SLM, JLM, and GWAS methods for
10 plant architecture traits

Parameter PH EH TBN TMAL LNAE LNBE LN LL LW MLA

H2a 0.95 0.94 0.94 0.93 0.92 0.90 0.90 0.94 0.91 0.92
SLMb 83 85 73 76 64 80 79 69 77 66
JLMc 86 96 79 50 61 69 90 84 65 83
GWASd 38 43 30 28 39 39 44 42 36 10

aHeritability value. bQN of single segregation populations. cQN of joint linkage populations.
dSignificant SNP number.
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The effect ofmost lociwas smaller than 1% (Supplemental
Table S6). In total, these significant loci could explain
30.13% to 53.49% of the phenotype variation (Supplemental
Fig. S16).

Different genetic algorithms identified different
numbers of loci underlying plant architecture variation
(Supplemental Tables S4–S6). Unlike NAM populations,
the ROAM population was derived from random
crosses of 14 diverse genetic backgrounds, which makes

the whole population lack common variants. Therefore,
GWAS was likely to detect fewer significant loci with
smaller genetic effects conferring plant architecture
variation. However, comparisons of the QTLs detected
by the threemethods still showed that a large proportion
(ranging from 15.8% to 30.6% for each trait) of QTLs
could be detected by all three methods (Supplemental
Fig. S17). Additionally, a majority (60%–77.2% for SLM
versus JLM, 26.6%–52.2% for SLM versus GWAS, and

Figure 2. Genome-wide landscape of genetic factors underlying plant architecture variation inmaize. Genome-wide association
mapping by the JLM was employed to detect the genetic factors underlying maize plant architecture variation. The x axis shows
the genomic position (Mb), and the y axis shows the likelihood ratio (LTR). The gray section represents LTR values significantly less
than the cutoff of 2.76, while the green and orange bars represents significant LTR values greater than the cutoff. Genes in blue
were coincident with QTLs.
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6.5%–14.4% for JLM versus GWAS) of QTLs could be
detected by two genetic algorithms, suggestive of the
robustness of QTLs identified in our study.
The density of genetic markers and the size of re-

combination blocks could allow us to map QTLs into
2-Mb genomic regions (Pan et al., 2016). We divided the
maize genome into 2-Mb sliding window bins for the
comparison of QTLs of different plant architecture
traits across 10 RIL populations. Combining all three
statistical methods, a total of 434 genomic recombinant
bins with peaks significantly associated with pheno-
typic variation were identified. Colocalization of these
genomic bins with well-known mutant genes indicates
that 150 out of 416 plant architecture well-known genes
were located within the confidence intervals of plant
architecture QTLs for JLM and 250 well-known genes
were coincident with detectable QTLs by SLM (Fig. 2).
For example, brachytic2 is coincident with a QTL on
chromosome 1 conferring plant height variation in the
ZONG/YU87-1 population, which also was validated
by QTL cloning (Multani et al., 2003; Xing et al., 2015;
Fig. 3A). And liguleless1 (lg1) is colocalized with a QTL
on chromosome 2 that controls leaf angle (Becraft et al.,
1990; Fig. 3B). Maize plants without ligule have upright
leaves, for which the leaf angle is nearly zero (Sylvester
et al., 1990). Natural genomic variation in lg1 between
inbreds is likely to quantitatively change leaf angle.
Therefore, the identification of natural favorable alleles
of lg1 would aid the target selection of leaf angle.
Notably, based on the colocalization of well-known
genes with QTLs by SLM, 39.9% of well-known plant
architecture-related maize genes are not located in the
QTL regions identified here as associated with plant
architecture variation. The noncoincidence of well-
known genes with detectable QTLs suggests either
thatmost of these genesmay have been fixed during the
domestication and selection of maize or that the alleles
present in the parents of the mapping population con-
tribute little to the variation and thus were not detected,
or that the power to detect these loci is still insufficient.
A proportion (27.3%) of QTLs underlying plant archi-
tecture variation detected by SLM are not colocalized
with any known functional mutant genes, implying
that the genetic basis of plant architecture is complex
and that many QTLs identified in this study would
provide useful selection targets for the ideal plant

architecture breeding in maize. New alleles at the loci
lacking variation in the breeding germplasm may be
introduced from the unadapted germplasm.

To detect any epistatic interactions between the plant
architecture QTLs, two-way ANOVA was employed
and 100 epistatic pairs betweenQTLswere identified at a
P value of 0.05. However, after Bonferroni correction, no
significant epistatic interaction was retained. This is
consistent with previous studies (Buckler et al., 2009;
Tian et al., 2011), which also showed that the variation of
plant architecture was rarely the result of epistatic effect.

Mendelian Effects Play an Important Role in the
Phenotypic Variation of Progeny for Plant
Architecture-Related Traits

Phenotypic variation between parental lines is a
major consideration when developing a segregating
population for QTL mapping on the assumption that
large phenotypic variation can lead to the identification
of large-effect QTLs and a large number of QTLs. The
inclusion of multiple traits and multiple populations in
our study allowed us to test this assumption directly.
Surprisingly, our analysis indicated that neither the
number nor the effect of QTLs is correlated significantly
with parental phenotypic variation. However, they
both showed significantly positive associations with
phenotypic variation in the populations, which itself is
weakly correlated to parental phenotypic variation
(Fig. 4, A–E; Supplemental Fig. S18), suggesting the
presence of parentalMendelian effects. SuchMendelian
effects indicate that proper selection of parents is not
only the basis of QTL mapping but also affects the
efficiency of crop improvement. Interestingly, male
parents provided significantly more additive alleles
than female parents (55.8% versus 44.2%, P = 6.1E-3,
ANOVA; Fig. 4F). However, the two parental alleles
contributed equally to the additive phenotypic varia-
tions (P = 0.77; Fig. 4G). Taken together, these results
indicate that parental Mendelian factors may play a
critical role in the phenotypic variation of the progeny.

Transcriptomic analyses of tens of thousands of
expressed genes in SAMs of 105 RILs and their parents
(B73 and Mo17) uncovered that a majority of maize genes
exhibited Mendelian variation where the expression of

Figure 3. Colocalization of two well-
known genes with QTLs underlying
plant architecture traits. A, brachytic2 is
coincident with a QTL on chromosome
1 conferring plant height variation in the
ZONG/YU87-1 population. B, lg1 is
colocalizedwith a QTL on chromosome
2 that controls leaf angle in the SK/
ZHENG58 population. LOD, Log of the
odds.
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genes in progeny is largely determined by parental
variation, confirming the prevalence of Mendelian ef-
fects (Li et al., 2013b). Here, we analyzed 10 plant
architecture-related traits across 10 RIL populations
and observed that parental phenotypic variations are
associated significantly with progeny phenotypic
variation, the number of QTLs, and the effects of QTLs.
Notably, although the number of QTLs with positive
effects varies between male and female parents for
plant architecture-related traits, the total positive con-
tribution of alleles from two parents is equal. Consistent
with previous studies, our results confirm that the
parental Mendelian effects are widespread for many
agronomic traits. Most of our elite parents are derived
from conventional breeding programs, indicating that
parental Mendelian effects may originate from the
process of breeding selection. The phenomena of pa-
rental Mendelian effects and the QTLs associated with
plant architecture traits may help breeders to select
elite inbreds for the selection of breeding cycle and
accelerate the breeding process.

A Substantial Number of Pleiotropic Loci or Linked QTLs
Conferring Plant Architecture in Maize Are Likely to Be
Key Developmental Genes

QTL mapping of different plant architecture traits
showed that QTLs controlling different traits often
overlapwith each other. For any two plant architecture-

related traits, the number of QTLs controlling both
traits ranged from 4 to 19 (Fig. 5A). As the phenotypic
distance between the two traits increased, the number
of common QTLs for both traits was reduced (Fig. 5, B
and C), which is consistent with the idea that pheno-
typic correlation among traits is due to the same
or linked genetic factors controlling these traits. We
identified 55 QTLs that are associatedwith at least three
different traits (Fig. 5D). Notably, there are 11QTLs that
are associated significantly with at least five traits
(Supplemental Fig. S19). Of all 434 2-Mb sliding ge-
nomic bins with detectable QTLs, 61.5% are associated
with only a single plant morphology trait, while 38.5%
are related to at least two traits.

Consistent with the phenotypic clustering tree of all
10 plant morphology traits, a large number (275) of
pleiotropic loci have been detected for any pair of mor-
phology traits within the biggest phenotypic cluster,
significantly more (P = 9.0E-3) than that for phenotypic
pairs between TBN,MLA, and the eight traits within the
biggest cluster (Fig. 5E). TBN and MLA, which are two
singletons in the phenotypic clustering tree, showed the
lowest genetic overlap as compared with any pheno-
typic pairs of all 10 plantmorphology traits. Based on the
significant P values of the pleiotropic QTL matrix of any
pair of plant architecture traits, the genetic distances of
any two plant architecture traits were obtained. Fur-
thermore, we constructed a phylogenetic tree of plant
architecture traits, which is largely consistent with a
phenotypic clustering tree (Supplemental Fig. S20). Both

Figure 4. Relationships between parental diversity and phenotypic variation in the progeny. A, Parental phenotypic variation
(PPV) is significantly associated with SD of progeny phenotypic variation (STV). B, Parental genetic variance (PGV) is significantly
associated with STV. C, STV is significantly associated with QTL number (QN). D, STV is significantly associated with QTL
phenotypic variance rate (QPV). E, Model of relationships between STV, PGV, PPV, QN, and QPV. F, Proportion of QTLs with
positive effects that were derived from male and female alleles. G, Distribution of QTL positive effects that were derived from
male and female alleles.

864 Plant Physiol. Vol. 175, 2017

Pan et al.

 www.plantphysiol.orgon September 28, 2017 - Published by Downloaded from 
Copyright © 2017 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org/cgi/content/full/pp.17.00709/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00709/DC1
http://www.plantphysiol.org


phylogenetic and phenotypic clustering trees intuitively
represent the divergence and relationships among plant
architecture traits in maize.
Colocalization analysis between pleiotropic loci and

well-known genes, of which most have been cloned
through mutant studies (Schnable and Freeling, 2011),
suggested that manymutant genes (166) are not located
in anyQTL regions, such as tassel branch1, rough sheath1,
rough sheath2, and tassel seed1 (Doebley et al., 1995;
Schneeberger et al., 1995; Timmermans et al., 1999;
Theodoris et al., 2003; Acosta et al., 2009). This indicates
that there is little phenotypically relevant genetic di-
versity for these genes among our parents or, perhaps,
in the maize breeding germplasm. However, we did
observe that a large number of 250 well-known genes,
especially the key developmental genes, are coincident
with QTLs by SLM, and 119 are in the genomic regions
with pleiotropic effects for plant morphology traits,
which is significantly higher (x2 test, P , 0.01) than
expectation (Supplemental Table S7).

This biggest phenotypic cluster contains mainly
SAM-derived or inflorescence meristem-derived traits,
which may be controlled by developmental genetic
mechanisms (Sheridan, 1988). Previous studies have
identified and cloned many developmental genes con-
trolling SAM identity and differentiation (Barton, 2010;
Schnable and Freeling, 2011). Interestingly, these well-
known cloned developmental genes (416) are fre-
quently colocated with plant architecture QTL regions,
especially the pleiotropic or linked genomic regions
(Supplemental Table S7). Zea floricaula leafy2 (Zfl2),
which is a homolog of the Arabidopsis (Arabidopsis
thaliana) mutant gene LEAFY, which generates more
rosette leaves, functions by promoting the transition
from inflorescence to floral meristem and controls
quantitative aspects of inflorescence phyllotaxy in
maize (Weigel et al., 1992; Bomblies et al., 2003). As
expected, Zfl2 is coincident with a pleiotropic genomic
region on chromosome 2, which controls LNBE, LN,
and LW at the same time. This coincidence makes Zfl2 a

Figure 5. Genomic regions with pleiotropic effects contribute largely to the genetic relationships within plant architecture traits
in maize. A, Summary of overlapped QTLs between 10 plant architecture traits. The bottom left part shows the –log10 values of
P, showing the extent of genetic overlap between plant architecture traits. The top right part illustrates the overlapped QN for
different pairs of architecture traits. B, Relationship between the proportion of pleiotropic QTLs and phenotypic correlation
between all pairs of architecture traits. PQR, PleiotropicQTL rate. C, Relationship between the proportion of phenotypic variation
explained by pleiotropic QTL (PPR) and phenotypic correlation. D, Genomic region rate with different number traits of mapping.
E, Pleiotropic QTL among different clusters. The clusters are defined as described in Figure 1D. F, Colocalization of well-known
genes with pleiotropic QTLs, showing the distribution of well-known genes in different genomic regions.
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strong candidate for this pleiotropic locus for future
study (Fig. 6A). A pleiotropic locus on chromosome 8,
controlling PH and LL, is coincident with Zmhomeo-
box1a (Zmhox1a), which is a homeobox gene controlling

tissue differentiation and development (Bellmann and
Werr, 1992; Fig. 6B).

Although TBN and MLA were divergent from the
biggest phenotypic cluster, there are a few pleiotropic

Figure 7. Map-based validation using RHLs for five QTLs. RHL family validation is shown for qPH3, qTMAL3, qPH1, qPH7, and
qTBN3. For each trait, the image at top shows the phenotypic variation between the two parents, while the graph at bottom shows
the phenotypic variation between two different homozygous genotypes of the target QTL region.

Figure 6. Colocalization of two well-
known developmental genes with the
pleiotropic loci conferring plant archi-
tecture in maize. A, Zfl2 is coincident
with a pleiotropic genomic region on
chromosome 2 that controls LNBE, LN,
and LW. B, Zmhox1a is coincident with
a pleiotropic genomic region on chro-
mosome 8 that controls PH and LL.
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loci that have been colocalized with well-known devel-
opmental genes. The dissection of the genetic basis of
floral branch systems in maize and related grasses sug-
gested a model in which ramosa1, ramosa2, barren stalks,
and tassel branch1modulate plant inflorescence andplant
architecture (Vollbrecht et al., 2005). Except for tassel
branch1, the other three key geneswere colocalized in the
pleiotropic loci, which are associated with TBN, TMAL,
LL, LW, and EH. Notably, lg1, which was reported
previously to induce ligules and auricles during maize
leaf organogenesis and further affect proximal-distal
signaling and leaf growth, is coincident with a pleiotro-
pic locus affecting MLA, LL, LW, and TBN as well
(Moreno et al., 1997; Moon et al., 2013). These results
indicate that developmentally associated loci contribute
to more correlations between plant architecture-related
traits than expected by chance (P = 1E-3, Monte Carlo

1,000 random resample), suggesting that key develop-
mental genes may be the source of the genetic overlap of
plant architecture in maize (Supplemental Table S7).

Validation of Five QTLs Using RHLs

Although fine-mapping using near isogenic lines is an
accepted standardway to validate a locus that controls a
phenotypic variation, the process of developing near
isogenic lines is time and labor consuming. RHLs, which
harbor heterozygous regions where the phenotypic QTL
of interest is located, may be available from an RIL
population (Yamanaka et al., 2001; McMullen et al.,
2009). The use of RHLs to validate and fine-map QTLs
has proven to be an efficient method (Yamanaka et al.,
2001; Watanabe et al., 2011). To validate the QTL

Figure 8. Fine-mapping of qPH3 using RHLs in the DE3/BY815 RIL population. A, Primary QTL mapping of qPH3 in the DE3/
BY815 population. B, RHL screening of qPH3. C and D, ANOVA based on the progeny genotypic and phenotypic variation in the
RHL families in Wuhan (C) and Hainan (D).
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mapping results of plant architecture QTLs identified in
this study, RHLs were obtained for five randomly se-
lected QTLs of plant height, TMAL, and TBN. As ex-
pected, all five QTLs could be detected with genetic

effects consistent with whole-genome QTL scanning
(Fig. 7). This implies the robustness of our genetic dis-
section and provides candidatefine-mapping regions for
the future improvement of plant morphology in maize.

Figure 9. Identification of candidate genes for qPH3. A, Haplotype association mapping of qPH3. The colors of the points in-
dicate minor allele frequency, yellow for 0.05 to 0.1, purple for 0.1 to 0.2, red for 0.2 to 0.3, blue for 0.3 to 0.4, and dark blue for
0.4 to 0.5. B, Expression-level variation for all candidate genes in the qPH3 region between RHLs with and without 600-kb target
genomic substitutions. C, Haplotype comparison of all candidate genes in the qPH3 region in different elite inbred lines. Only
the DE3/BY815 RIL population, of which the two parents had haplotype divergence for three genes, had qPH3 detected.
D, GRMZM2G177220 has a nucleotide mutation detected only between DE3 and BY815, which could cause an early stop
codon.
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We elected to focus on the fine-mapping of qPH3,
which is a major QTL with an additive effect of ;8 cm
and which explains 17% of the plant height variation in
the DE33BY815 RIL population (Fig. 8A). PrimaryQTL
mapping has anchored qPH3 into a genomic region
ranging from 162.2 to 166.7 Mb on chromosome 3 (Fig.
8B). We obtained the segregating RHLs and developed
nine competitive allele-specific PCR (KASP) markers in
the target region of qPH3. Phenotypic Student’s t test
of the progeny of these segregating RHLs narrowed
down the target region to between KASP markers K4
and K8, which spans a 1-Mb (from 165.72 to 166.59 Mb)
genomic region according to the B73 reference genome
(Fig. 8C). RHL subfamilies with segregating genomic
substitution were planted and subjected to phenotyp-
ing and genotyping with KASP markers M1 to M5. The
progeny phenotypic test indicates that the causal gene
of qPH3 is located in the ;600-kb genomic region from
M1 to M5 (Fig. 8D).
The 600-kb genomic region has 16 annotated genes

according to the maize B73 reference genome (Schnable
et al., 2009). By integrating the genome-wide associa-
tion mapping results of plant height in a Chinese as-
sociation panel consisting of 505 diverse inbred lines
(Yang et al., 2011), eight SNPs derived from four genes
in the 1-Mb target genomic region were identified to be
significantly associated with plant height in maize (Fig.
9A). Subsequent RNA-seq analysis on the leaves of the
segregating lines of RHLs identified 146 differentially
expressed genes genome wide. Gene Ontology enrich-
ment showed that these differentially expressed genes
were enriched in the category of developmental
growth, response to biotic stimulus, etc. Of these dif-
ferentially expressed genes between progeny lines with
BY815 alleles and the ones with DE3 alleles, only two
genes (GRMZM2G058250 and GRMZM2G177227) are
located in the target genomic region, providing targets
of the cloning of qPH3 (Fig. 9B). For a causal gene of the
QTL of interest, the parents of the mapping population
should have different haplotypes. We analyzed the
haplotype variation at all 16 genes in the target genomic
region, 13 of which have alternative haplotypes be-
tween parents of five RIL populations (K223CI7,
K223DAN340, K223BY815, BY8153KUI3, and
KUI33B77). However, qPH3was not detected in all five
RIL populations. Resequencing of these 16 candidate
genes in the parents also revealed that three genes had
dramatic genomic variations, which could result in
nonsynonymous mutations, early translation termina-
tion, etc., between parents of all five RIL populations
(Supplemental Tables S8 and S9). However, these three
genes (GRMZM2G058250, GRMZM2G177227, and
GRMZM2G177220) within the target region, two of
which were differentially expressed, have identical
haplotypes for the parents of these five RIL populations
but different haplotypes betweenDE3 and BY815. qPH3
has been identified in the DE33BY815 RIL population,
implying that these three genes are likely to be the
causal candidates of qPH3 (Fig. 9C). Of particular in-
terest, GRMZM2G177220 has a nucleotide mutation

between DE3 and BY815, which could cause an early
stop codon. This nucleotide mutation does not exist in
the parents of the other five RIL populations but solely
between DE3 and BY815 (Fig. 9D).

Taking the results from association mapping, tran-
scriptome analysis, and haplotype diversity based on can-
didate gene resequencing together, GRMZM2G058250,
GRMZM2G177227, and GRMZM2G177220 are considered
to be the candidate genes underlying qPH3. These three
genes encode plastid-specific ribosomal protein4, exocyst
subunit exo70 family protein F1, and a transcription
factor with Myb-like domain and homeodomain, re-
spectively. Of particular interest, GRMZM2G177227
has been shown to be associated with plant height
variation in a U.S. association mapping panel (Wallace
et al., 2014). The Arabidopsis homologous gene
GRMZM2G177220 contains Myb-like, homeodomain-
like, and signal transduction response domains, and
its mutants showed reduced sensitivity to cytokinin
inhibition on root elongation and lateral root formation,
suggestive of a potential role in the regulation of plant
height (Riechmann et al., 2000). The identification of
these candidate genes provides critical information for
future cloning of qPH3.

MATERIALS AND METHODS

Populations and Phenotypes

In previous studies, we developed a ROAMpopulation, consisting of 10 RIL
populations (B733BY804, BY8153KUI3, DAN3403K22, DE33BY815,
K223BY815, K223CI7, KUI33B77, YU87-13BK, ZHENG583SK, and
ZONG33YU87-1), derived from 14 diverse elite inbred lines ofmaize (Zeamays;
Pan et al., 2016; Xiao et al., 2016). Populations of B733BY804, KUI33B77,
K223CI7, DAN3403K22, ZHENG583SK, YU87-13BK, and ZONG33YU87-1 were
planted in 12 locations, including Hubei (E114°17, N30°35), Sichuan (E104°04,
N30°40), Guangxi (E108°19, N22°48), Chongqing (E106°33, N29°35), Henan
(E113°40, N34°46), Yunnan (E102°42, N25°04), and Hainan (E109°31, N18°14)
province in 2011 and Hubei (E114°7, N30°35), Chongqing (E106°33, N29°35),
Henan (E113°40, N34°46), Yunnan (E102°42, N25°04), and Hainan (E109°31,
N18°14) province in 2012. The other three populations, DE33BY815, K223BY815,
and BY8153KUI3, were planted in five locations in 2012: Hubei, Chongqing,
Henan, Yunnan, and Hainan province. In each location, RILs from a RIL family
were randomly placed, with 12 plants of one RIL planted in a row. Five plants in
the middle of the row were selected for the phenotyping of each RIL.

All populations were subject to phenotyping in 2011 and 2012. In total,
10 plant architecture-related traits, PH (cm), EH (cm), TBN (number), TMAL
(cm), LNAE (number), LNBE (number), LN (number), LL (cm), LW (cm), and
MLA (°), were measured manually (Supplemental Fig. S2). For the measure-
ment of LNAE and LNBE, we considered the topmost ear as the dividing point
regardless of how many ears were on the main stalk. We counted the leaf
number above and below the topmost ear as LNAE and LNBE, respectively. To
accurately measure phenotypic variations, we transformed the raw phenotypic
data from all 13 and five locations of 2 years into BLUP values for all 10 plant
architecture traits using the R package lme4 of lme function. The heritability of
10 plant architecture traits also was calculated using the R package lme4 of lme
function. All analyses, including phenotypic clustering, correlation, and
ANOVA, were based on BLUP phenotype data values.

Genotyping and Mapping

The Illumina MaizeSNP50 BeadChip of 56,110 SNPs was employed to
identify the recombination bins, and ultra-high-resolution genetic maps were
constructed for all 10 RIL populations (Pan et al., 2016). Additionally, 14 diverse
elite inbred lines were selected from a diverse association mapping panel (Yang
et al., 2010, 2011) and were subject to RNA-seq experiments on kernels at 15 d
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after pollination (Fu et al., 2013), generating hundreds of thousands of SNP
markers. Recombination bins and ultra-high-density linkage maps of the
ROAM population were used to dissect the genetic factors underlying maize
plant architecture as follows.

(1) SLM was employed to detect QTLs in each RIL population. Winqtlcart
2.5 software along with linkage map and BLUP phenotypic data were used for
QTL mapping (Wang et al., 2006). The mapping function cim was used. The
95% LOD values for 10 traits across 10 RIL populations were obtained through
1,000 permutations. The LOD thresholds ranged from 2.89 to 3.53, with a mean
value of 3. If the genomic region had a detectable LOD value beyond 3, we
defined it as one QTL, and the QTL confidence interval spanned the genomic
regions corresponding to one LOD drop from the peak.

(2) JLM was performed based on the combined 10 RIL populations and the
BLUP phenotypic data. We used the following formula to estimate the rela-
tionship between ROAM genotype and phenotype.

y ¼ Xbþ Zg þ j þ «

where y is the phenotype of ROAMpopulations with 1,887 individuals; X is the
populationsmean value of the phenotype; Z is anN3 Pmatrix for the genotype
of the haplotype (N is 1,887 and P = 14 is the parent number); and g is a vector of
genetic effects for the SNP of interest. The likelihood ratio test (LRT) was
employed to test the phenotypic association significance of each haplotype bin.
The permutation test was conducted 500 times to determine the threshold of the
LRT value, and the 99.5 percentile of the LRT value was defined as the cutoff.
The final threshold of LRT was 2.76 (Xiao et al., 2016).

(3) GWAS based on ultra-high-density genotyping data across 10 RIL
populations was performed. High-density SNP genotypes of parents derived
from RNA-seq were projected to offspring based on the recombination/
haplotype bins of 1,887 lines, which generated the ultra-high-density geno-
typing data for subsequent GWAS with plant architecture data. The main step
of this method was stepwise regression. Briefly, a subsample composed of 80%
of lines randomly selected from the whole ROAM population without re-
placement was used for GWAS scans, and the process was repeated 100 times.
Resample model inclusion probability was used to evaluate the robustness of
the SNPs included in the model. The resample model inclusion P cutoff was
defined as 0.05.

Detailed descriptions of all three methods can be found in a previous study
(Xiao et al., 2016).

Analysis of Epistasis

Based on all significant QTLs or loci obtained as described above by SLM,
JLM, and GWAS, we extracted loci with the peak value LOD score for each
QTL. For the single locus, we performed epistatic analysis for every pair of peak
loci using two-wayANOVA in the R environment.P, 0.05was adjusted by the
total number of tests for the detection of significant epistatic interaction.
Combined with the genotypic information of all significant single loci and two-
locus interactions, we used the lm of the R language to estimate their contri-
butions to the phenotypic variation (Yu et al., 1997).

Estimation of Correlations between Parental Variation and
Progeny Diversity

To understand the source of genetic diversity of plant architecture traits, we
conducted a comprehensive correlation analysis of PPV, PGV, STV, QN, and
QPV for all 10 plant architecture traits across 10maize RIL populations. PPVs of
all 10 aboveground traits were the absolute difference between two parents of a
population. The formula used was:

PPV ¼ abs ðP12P2Þ
where P1 is the one parent phenotypic value, P2 is the other parent phenotypic
value, and P1 and P2 were the male and female parents of the RIL population.
PGVs of all pairs of parents were calculated based on genetic diversity esti-
mated with high-density markers. We evaluated the genetic relationship be-
tween the pairs of parents based on the high-density markers generated by our
laboratory previously (Yang et al., 2014). QNwas obtained based on the results
of the SLM method (Supplemental Table S3). QPV was calculated by inte-
grating all significant QTLs of SLM together with the lm function to represent
the proportion of phenotypic variation that a QTL could explain for a specific
trait. In order to make all different variables comparable, we adjusted each
variable using this formula:

Y ¼ ðX2meanðXÞÞ=meanðXÞ
to compare the relationship for PPV, PGV, STV, QN, and QPV, where X is the
original value of PPV, PGV, STV, QN, and QPV, Y is the adjusted value for
comparison, and mean is the average of X. Furthermore, for the 10 RIL popu-
lations, the QN and phenotypic effect to which male and female parents con-
tributed positively also were summarized based on the SLM results. All
statistical analyses of this section were performed using R software (https://
www.r-project.org/).

The Dissection of QTL Overlap of Plant Architecture Traits

In order to detect pleiotropic QTLs, twomethods were used. (1) Using SLM,
we compared the QTL confidence intervals to calculate the number of over-
lappingQTLs for different traits. (2)We split the genome into sliding 2-Mb bins,
and if a specific genomic bin had at least two SLMQTL peaks for different traits,
it was defined as a pleiotropic locus.

To test the pleiotropic effect between different traits, we used the following
formula based on SLM QTL information to estimate the relationships (Li et al.,
2016):

P ¼

�
l
m

��
n2 l
s2m

�
�
n
s

�

where n is the number of QTLs, which is calculated as the total physical genome
length divided by the average QTL interval (in this study, the average QTL
confidence interval was 2 Mb, so n was equal to 1,031); m is the number of
overlapping QTLs between two traits of method (2) in this section; l is the QN
for the trait with more detectable QTLs; and s is the QN for the trait with fewer
detectable QTLs by SLM.

To systematically dissect the genetic overlap among different plant archi-
tecture traits, a phylogenetic tree of plant architecture traits was constructed
based on the converted distances of P values described above. Briefly, we used
the R packages ape and phangorn to do the phylogenetic tree analysis. The nj
function was used to reestimate the genetic relationships by the neighbor-
joining method.

Construction of a Phenotypic Clustering Tree of All Maize
Plant Architecture Traits

For all 1,887 progeny families of 10 phenotypic traits, we first used the fol-
lowing formula to adjust the phenotypic ranges of different traits to make the
different traits comparable:

Y ¼ ðX2meanðXÞÞ=meanðXÞ
where X is original phenotypic value of 10 traits and Y is the transformed value,
which was used for further analysis. The correlation analyses of 10 plant ar-
chitecture traits were implemented based on the transformed Y values. Second,
we used the dist function of the euclidean method in the R environment with
transformed phenotypic values to calculate their distance. The Euclidean dis-
tance was calculated between all pairs of traits. The formula used is:

Ymn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
10

k¼1
ðXmk 2XnkÞ2

s

WhereYmn is the Euclidean distance value between traitsm and n (wherem and
n are traits selected from the 10 measured traits) and X is the transformed
phenotypic value. Based on the phenotypic distance of all pairs of 10 traits, we
used the hclust function to construct the hierarchical cluster, which we called a
phenotypic clustering tree relationship. Furthermore, in order to dissect the
genetic basis that underlies the phenotypic clustering tree relationship of all
10 plant architecture traits, we analyzed the relationships between phenotypic
distances of all 10 plant architecture traits, the number of pleiotropic QTLs (see
above), and the effect of pleiotropic QTLs (the proportion of phenotypic vari-
ation that pleiotropic QTLs could explain). The effect of pleiotropic QTLs was
calculated as pleiotropic QTLs divided by the total QTL effect value. Based on
phenotypic distance, pleiotropic QTLs, and pleiotropic QTL effect, we used the
lm function of R to estimate the relationship using the following formula:
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Y ¼ aX þ b

whereY is the phenotypic distance,X is the pleiotropic QTLs or pleiotropic QTL
effect, and a and b are the evaluation parameters. For the regression formula, the
regression coefficient and P value also were calculated.

QTL Validation Using RHLs

Five QTLs were selected arbitrarily to verify the mapping results. They were
qPH3 on chr3:161959511-166378535 affecting PH in the DE33BY815 populations,
qTMAL3 on chr3:172477014-176570244 affecting TMAL in the DE33BY815 pop-
ulations, qPH1 on chr1:98297572-116455713 affecting PH in the SK3ZHENG58
populations, qPH7 on chr7:126535776-130704819 affecting PH in the K223BY815
populations, and qTBN3 on chr3:173803352-178006685 affecting TBN in the
K223BY815 populations. Based on the high-density linkage map, we identified
the RHLs from the database (Liu et al., 2016) and planted them inWuhan, China,
in 2015. KASPmarkerswere designed and employed for the genotyping of RHLs.
We identified five lines homozygous for each parental allele in the region of the
QTL of interest. Accurate phenotyping was performed in each RHL family.
Phenotypic differences between the lines homozygous for different alleles at the
target QTL regions were calculated and compared using ANOVA. QTLs were
validated preliminarily if phenotypic variation between two different homozy-
gous genotypes of the target QTL region was significant (P # 0.05). Primer in-
formation is provided in Supplemental Table S10.

Fine-Mapping of qPH3 and Candidate Gene Mining
Using Omics

A major QTL affecting PH, qPH3, with R2 . 15% was identified on chro-
mosome 3 in the DE3/BY815 population. RHLs were selected to fine-map this
QTL. First, we developed new markers to validate the QTL’s existence as de-
scribed above. Then, more KASP markers were developed, and additional
RHLs with recombination crossovers in the region were identified and tested in
2015 and 2016. This narrowed down the target genomic region to 600 kb. RNA-
seq was conducted on the seedling leaves of RHLs with and without 600-kb
genomic substitutions. RNA-seq reads were mapped on the maize reference
genome AGPv2 (www.maizesequence.org; Schnable et al., 2009) using Tophat
2.0 (Kim et al., 2013) with default parameters, and the reads per kilobase of exon
model per million mapped reads of all detectable genes in RHLs with and
without 600-kb target genomic substitutions were calculated using Cufflinks
(Trapnell et al., 2010). Differentially expressed genes were identified between
RHLs with and without 600-kb target genomic substitutions. Additionally,
associationmapping of the target genomic region of qPH3was performed using
1.03 million SNPs genotyped in a diverse Chinese association mapping panel
with 505 inbred lines (Yang et al., 2010, 2011, 2014; Li et al., 2013a). Furthermore,
the haplotypes of all candidate genes in the 600-kb genomic region in all
14 parents were analyzed and compared. Additionally, we designed primers
for the amplifications of genic coding sequence regions, 59 2 kb upstream and 39
1 kb downstream, of all 16 candidate genes in all 14 parents of the ROAM
population. The PCR products were subjected to Sanger sequencing for ge-
nomic variant identification followed by haplotype analysis for the determi-
nation of causal gene mining. Taking account of the results from fine-mapping,
RNA-seq analysis, candidate association mapping, and haplotype comparison
together, we proposed the candidate genes. Primer information of fine-
mapping is provided in Supplemental Table S11.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Genetic diversity of 14 parents of our ROAM
population.

Supplemental Figure S2. Phenotypic variation of 10 plant architecture
traits across 10 RIL populations in maize.

Supplemental Figure S3. Overview of QTL results for PH in maize.

Supplemental Figure S4. Overview of QTL results for EH in maize.

Supplemental Figure S5. Overview of QTL results for TMAL in maize.

Supplemental Figure S6. Overview of QTL results for TBN in maize.

Supplemental Figure S7. Overview of QTL results for LNAE in maize.

Supplemental Figure S8. Overview of QTL results for LNBE in maize.

Supplemental Figure S9. Overview of QTL results for LN in maize.

Supplemental Figure S10. Overview of QTL results for LL in maize.

Supplemental Figure S11. Overview of QTL results for LW in maize.

Supplemental Figure S12. Overview of QTL results for MLA in maize.

Supplemental Figure S13. Distribution of QTL effects (R2) for all 10 plant
architecture traits by the SLM method.

Supplemental Figure S14. Number of QTLs with R2 . 10% for all 10 plant
architecture traits in maize.
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