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Summary

� Improvement of grain yield is an essential long-term goal of maize (Zea mays) breeding to

meet continual and increasing food demands worldwide, but the genetic basis remains

unclear.
� We used 10 different recombination inbred line (RIL) populations genotyped with high-

density markers and phenotyped in multiple environments to dissect the genetic architecture

of maize ear traits.
� Three methods were used to map the quantitative trait loci (QTLs) affecting ear traits. We

found 17–34 minor- or moderate-effect loci that influence ear traits, with little epistasis and

environmental interactions, totally accounting for 55.4–82% of the phenotypic variation.

Four novel QTLs were validated and fine mapped using candidate gene association analysis,

expression QTL analysis and heterogeneous inbred family validation.
� The combination of multiple different populations is a flexible and manageable way to col-

laboratively integrate widely available genetic resources, thereby boosting the statistical

power of QTL discovery for important traits in agricultural crops, ultimately facilitating breed-

ing programs.

Introduction

Maize (Zea mays) was domesticated from its wild relative teosinte
by ancient agriculturalists nearly 9000 yr ago (Matsuoka et al.,
2002). During this process, dramatic changes in the female inflo-
rescence or ear made maize an important staple crop worldwide
for food, feed and fuel. Maize grain yield has increased eight-fold
in the past century (Duvick, 2005), with the majority of the gain
being attributed to selection and hybrid breeding. Ear length, ear
row number, ear weight and cob weight are important compo-
nent traits of maize yield. The clarification of the genetic architec-
ture of ear traits would allow breeders to more efficiently design
breeding schemes to manipulate these traits.

The construction of a mapping population is a prerequisite for
the identification of quantitative trait loci (QTLs) that influence
a target trait. In plants, many different types of biparental popu-
lation can be derived from the initial cross of two parental lines.
Among these, the recombination inbred line (RIL) population is
widely used to identify QTLs in many crop species (Yano &
Tuberosa, 2009). However, the fine mapping and cloning of

genes underlying QTLs are resource- and time-consuming pro-
cesses because large populations are required to achieve a suffi-
cient map resolution. In addition, the complexity of the maize
genome, with its abundance of transposons and repetitive
sequences, further slows the progress of fine mapping (Salvi &
Tuberosa, 2005; Mackay et al., 2009; Schnable et al., 2009). By
contrast, genome-wide association study (GWAS) using geneti-
cally diverse inbred lines provides a tool that can fine map QTLs
by taking advantage of historical recombinations (Flint-Garcia
et al., 2003). However, GWAS is often limited by the inherent
population structure and has very low power for the detection of
low-frequency variants (Flint-Garcia et al., 2005; Yu et al., 2006;
Zhang et al., 2010).

In recent years, the multi-parent design, which was originally
used on a heterogeneous stock of mice (Valdar et al., 2006), has
emerged as an efficient way to identify QTLs for agriculturally
important traits in plant species (Cavanagh et al., 2008; Buckler
et al., 2009; Huang et al., 2011). A classic example of multi-
parent design is the maize nested association mapping (NAM)
population (Yu et al., 2008), the large diversity and clear popula-
tion structure of which enabled it to unravel the genetic architec-
ture of a wide range of complex traits (Buckler et al., 2009;*These authors contributed equally to this work.
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Brown et al., 2011; Kump et al., 2011; Tian et al., 2011; Hung
et al., 2012; Peiffer et al., 2014). However, the extremely unbal-
anced parental contributions might cause some statistical issues
with regard to the low power of QTL detection. Conversely, the
multi-parent advanced generation intercross (MAGIC) popula-
tion has a balanced contribution from all founders (Kover et al.,
2009; Bandillo et al., 2013). Recently, a maize MAGIC popula-
tion was established with eight diverse founder lines that pro-
vided a useful resource for an understanding of the genetic basis
of quantitative traits (Dell’Acqua et al., 2015). Unfortunately,
the development of NAM and MAGIC populations requires
extensive field and laboratory effort, which greatly limits the
application of the multi-parent population design to other plant
species or for traits that have shown little variation in the cur-
rently available NAM and MAGIC populations.

In this study, we present a new design for a multi-parent popu-
lation consisting of 10 independent RIL populations. This design
provides researchers with a flexible and cost-effective method to
combine publicly available genetic resources for the dissection of
complex traits in plants collaboratively, instead of independently,
not only potentially boosting statistical power, but also avoiding
extensive efforts in de novo population development, such as
NAM or MAGIC. In this study, we combined 10 RIL popula-
tions and three different, but complementary, statistical methods
to identify QTLs or trait-associated single nucleotide polymor-
phisms (SNPs) for maize ear traits. The deep dissection of the
mapping results provided insights into the genetic architecture of
ear traits and led to informative clues for maize breeding.

Materials and Methods

Germplasm, trials and phenotypic data analysis

Ten RIL populations with nearly 200 lines per population were
collected (Supporting Information Fig. S1). The 10 RIL popula-
tions had 14 parents that originated from the association panel of
508 genetically diverse maize inbred lines (AM508) reported pre-
viously (Yang et al., 2011). The 10 RIL populations and the
AM508 panel were planted in eight trials during the summer and
winter of 2011 and 2012 in five locations with one random block
replication per location in China. The association panel
(AM508) and seven RIL populations (B739 BY804,
KUI39 B77, K229CI7, DAN3409 K22, ZHENG589 SK,
YU87-19 BK and ZONG39 YU87-1) were planted in all eight
trials (i.e. Hubei, Chongqing, Henan, Yunnan and Hainan dur-
ing 2011 and 2012), whereas the remaining three RIL popula-
tions (DE39 BY815, K229 BY815 and BY8159 KUI3) were
planted in four trials (i.e. Chongqing, Hubei, Henan and Yun-
nan during 2012) because of insufficient seeds for sowing in 2011
(Fig. S2). At least five well-pollinated ears in each row were har-
vested for phenotypic measurements of four ear traits by standard
procedures, including ear length (EL), ear row number (ERN),
ear weight (EW) and cob weight (CW). Some RILs had abnor-
mal ear development and were discarded from the analysis. Each
RIL population consisted of 165–207 RILs, resulting in 1887
RILs for further studies (Table S1).

When treating the location or year as a single environment,
analysis of variance (ANOVA) for each trait was performed to
evaluate the effect of genotype and environment on phenotypic
variance in R function ‘LM’ (R Core Team, 2012). The line
mean-based broad-sense heritability for each trait was calculated
as: H 2 ¼ d2g=ðd2g þ d2e=nÞ, where d2g is the genetic variance, d2e is
the residual variance and n is the number of environments. The
estimates of d2g and d2e were obtained by the mixed linear model,
treating genotype and environment as random effects. To elimi-
nate the influence of environmental effects on phenotypic varia-
tion (P < 0.001, ANOVA; Table S2), the best linear unbiased
predictor (BLUP) value for each line within each RIL population
was calculated across all environments using the mixed linear
model with the fitting of both genotype and environment as ran-
dom effects in the R package ‘LME4’ (R Core Team, 2012). The
BLUP values for the RILs of 10 populations were combined to
facilitate the following analyses, such as phenotypic description
statistics, Pearson correlations and QTL analysis for the four ear
traits.

SNP genotyping, imputation and projection

The AM508 panel and the 10 RIL populations were character-
ized with 56 110 SNPs by an Illumina MaizeSNP50 BeadChip
covering 19 540 maize genes (Ganal et al., 2011). A total of
11 360–15 285 SNPs were polymorphic within each RIL popula-
tion. A very high-density genetic map for each RIL population
was constructed by our laboratory (Pan et al., 2015), which cap-
tured 1979–3071 (Table S1) genetic blocks (a genomic region in
which no recombination exists) per population, with an average
block size of 859 kb (Fig. S3). For the regions in which the physi-
cal positions of the SNPs were not collinear with the genetic posi-
tions, we corrected the physical positions by the linear
interpolation method according to the physical positions of the
flanking collinear SNPs. The linear interpolation method was

performed as: p ¼ p1 þ ðp2 � p1Þ g�g1
g2�g1

, where g1 and g2 are the

genetic positions of the flanking collinear markers, g is the genetic
position of the in-collinear marker, and p1 and p2 are the physical
positions of the flanking collinear markers. Considering the fact
that our genetic maps captured the majority of recombination
events that existed in the development of RIL populations, we
directly imputed the missing marker genotypes using the closest
flanking non-missing markers.

To facilitate joint linkage mapping (JLM) and GWAS, we pro-
jected the 1.03 million SNP genotypes of the 14 parental lines
obtained by RNA-seq (Fu et al., 2013; Li et al., 2013; Wen et al.,
2014; Yang et al., 2014) onto 1887 offspring RILs using a two-
step imputation strategy. We first separately projected high-
density SNPs from two parents onto offspring RILs based on the
linkage map for each RIL population, similar to the aforemen-
tioned imputation procedure. We then mapped the projected
genotypes of RILs to base pairs according to the parental geno-
types in each RIL population, and merged the resulting 10
datasets together. Overall, there were 14 613 genetic blocks avail-
able for JLM and 185 212 blocks available for GWAS, where the
additional blocks in GWAS were identified using the historical
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recombination in the founders. The average block length implic-
itly indicated that GWAS achieved the highest resolution, fol-
lowed by JLM and separate linkage mapping (SLM) (Fig. S3).
Based on the minor allele frequency (MAF) value of each SNP in
the merged dataset, the homozygote of the major allele was
numerically coded ‘0’, the homozygote of the minor allele was
coded ‘2’ and the heterozygote was coded ‘1’. The numerically
coded genotypes were eventually used in the data analysis.

SLM

Within each RIL population, a composite interval mapping pro-
cedure (Zeng, 1994) was used to perform SLM with the software
Windows QTL CARTOGRAPHER v.2.5 (Wang et al., 2012). We
performed 500 permutations for each trait within each popula-
tion to determine the threshold of the logarithm of odds (LOD)
score for the significance test, and the resulting LOD score
threshold ranged from 2.6 to 3.2 (a = 0.05). For simplicity, we
chose the 3.0 LOD score as the global cut-off point. To avoid an
overestimation of the number of QTLs, we declared adjacent
peaks with nearby genetic positions (≤ 10 cM) and identical effect
directions as one QTL. A QTL support interval was defined as
the two-LOD drop position ranging from the QTL peak. If the
support intervals of QTLs detected by different RIL populations
overlapped, the set of QTLs was integrated to a ‘consensus QTL’,
the support interval of which was the union conjunction of over-
lapping QTL support intervals. If a QTL detected in one popula-
tion could not be overlapped with QTLs in any population, the
QTL was considered as a ‘unique QTL’. To assess the influence
of sample size and unbalanced environments on QTL detection
with SLM, we performed a Monte Carlo resampling analysis
based on empirical data to evaluate the magnitude of possible
bias. The details are described in Methods S1. With the results of
SLM, we performed meta-QTL analysis to integrate QTL infor-
mation for 10 RIL populations, the technical details of which are
described in Methods S2.

JLM and GWAS

Combining the 10 RIL populations, JLM and GWAS were per-
formed to further dissect the genetic determinants of ear traits.
For JLM, a linear mixed model was built and the restricted maxi-
mum likelihood (REML) was used to test the significance of each
recombination block, where the population mean and intercept
term were fixed effects, and marker and polygenic effects were
treated as random effects. The tested block contained, in total, 14
additive effects corresponding to the parental alleles of 14
founders. The covariance structure of the polygenic effects was
inferred from the marker-inferred kinship matrix. We used a per-
mutation test of 500 permutated samples to determine the
threshold of likelihood ratio test (LRT) scores (Chen & Storey,
2006). For simplicity, we defined the physical position range
delimited by the JLM threshold as JLM QTL support regions.
Furthermore, we performed GWAS following the stepwise
regression and resample methods reported previously (Valdar
et al., 2009; Tian et al., 2011), with a minor modification.

Finally, a backward regression was employed to reduce the redun-
dancy of the significant SNPs for each trait, leaving a set of candi-
date SNPs for gene annotation and validation. The permutation
tests were used to determine the significance threshold for
genome-wide SNPs in the stepwise regression, resample methods
and final backward regression (a < 0.05). More details of JLM
and GWAS are described in Methods S3 and S4, and the R
scripts and the genotype and phenotype data of the 10 RIL popu-
lations are publicly available at the permanent website (http://
www.maizego.org/Resources.html).

Epistasis and QTL-by-environment interactions

Markers only significant in JLM or GWAS were used in the
interaction analysis separately, because JLM employed parental
allelic genotype data, whereas GWAS used biallelic genotype
data. For simplicity, all the heterozygous genotypes (< 4%) were
assigned as missing values to ensure that only homozygous allelic
interactions were estimated and tested. A linear regression model
including QTL main effects, family effects and pair-wise QTL
interactions was used to estimate the epistatic effects. We tested
all pair-wise interactions and used P < 0.01 to declare signifi-
cance.

The genotypic data used in the QTL-by-environment analysis
were defined in a similar manner to the data used for epistatic
analysis. The phenotypic data were not normalized within popu-
lations, which enabled an estimation of precise QTL-by-
environment interaction. We used a linear mixed model includ-
ing the family effects as fixed effects, and QTL, environment,
QTL-by-environment and family-by-environment effects as ran-
dom effects. The null model is that which excludes the QTL-by-
environment effect. The REML method was used to estimate the
variance components of QTL and QTL-by-environment interac-
tions. We declared the significance of the QTL-by-environment
interaction when the LRT value exceeded the threshold of JLM.

Genetic validation with heterogeneous germplasm
resources

The reliability of the identified candidate SNPs should be vali-
dated by other genetic populations with heterogeneous back-
grounds. Here, we used two different germplasm resources to
validate our results. (1) The maize NAM population. Previously,
the NAM population detected a number of SNPs associated with
ear length and ear row number using joint linkage and GWAS
analyses (Brown et al., 2011). If a candidate SNP was located
within 1Mb of any joint QTL peak or GWAS SNP detected in
NAM, we defined that this candidate SNP co-localized with the
previously reported peak in the maize NAM population. (2) The
maize AM508 population. The legitimacy of the candidate SNP
was considered to be greatly strengthened if it still showed a sig-
nificant association with target traits in the maize AM508 popu-
lation (P < 0.05). The GLM model was used to correct the
confounding impact of population structure, which has been
thoroughly characterized previously (Yang et al., 2011). To test
whether there was an enrichment of genetic validation by
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AM508, the observed proportion of validated candidate SNPs
was compared with a null distribution, obtained by randomly
selecting the same number of SNPs across the genome, calculat-
ing the validated proportion under the GLM model and repeat-
ing the process 500 times (P < 0.05).

Candidate genes of four QTLs for ear length

To further understand the genetic architecture of ear traits, we
determined the candidate genes of four QTLs with greater effects
or highly repeatable in multiple methods and populations. The
regional association analysis was conducted per QTL to narrow
down the QTL region and to identify the candidate gene based
on the AM508 population. For the QTL detected by JLM or
GWAS, the JLM peak block or GWAS candidate SNP was used
to extend 500 kb upstream and downstream to infer the associa-
tion region. For the QTL only detected by SLM, the support
interval was directly referred to be the association region. The
gene in the locus or closest to the most significant SNP was
inferred as the candidate gene. To infer the functional mecha-
nisms of candidate genes on the phenotype (i.e. mediated or not
by expression variation), we used the previously published expres-
sion QTL (eQTL) data for 28 769 maize genes (Fu et al., 2013)
to evaluate the relationship between gene polymorphisms and
expression, or between gene expression and phenotypic varia-
tions. In order to provide more evidence for the QTL or candi-
date gene, we obtained a near isogenic line (NIL) population of
the target QTL by the heterogeneous inbred family (HIF) strat-
egy, which is widely used in QTL fine mapping (Tuinstra et al.,
1997). The HIF-NIL population was employed to validate the
existence of QTL using ANOVA.

Overlap between linkage mapping and GWAS

To evaluate the overlap between QTLs identified via linkage
mapping and SNPs identified via GWAS, we calculated the pro-
portion of SNPs falling inside QTL regions detected by SLM
and JLM, referred to as the observed proportion. The proportion
of random SNPs in the genome falling inside QTL regions was
referred to as the expected proportion. We used the ‘binom.test’
in the R package to test the significance of the difference between
observed and expected proportions (P < 0.05).

Simulation studies

In order to appropriately interpret the empirical results showing
that the three models had different capacities to detect a specific
QTL, we simulated 25 QTLs evenly dispersed in a hypothetical
genome with 10 chromosomes with different effect sizes and dif-
ferent directions of the effects, and only 7–11 of the simulated
QTLs segregated within each of the 10 simulated biparental pop-
ulations (Fig. S4). The same three models (SLM, JLM and
GWAS) were used to estimate the QTL parameters and to detect
QTLs. The simulation was replicated 500 times to evaluate the
statistical power of each model. In addition, we built a hypothesis
test with the simulated data to estimate the power and false

discovery rate (FDR) for declaring a QTL at low frequency when
it was detected by SLM, but not by JLM or GWAS. Details of
the simulation studies are described in Methods S5.

Co-localization of QTLs and inflorescence candidate genes

Most maize inflorescence genes were isolated by transposon and
chemical mutagenesis. We collected information on 20 cloned
inflorescence genes from a previous study (Brown et al., 2011)
and tested these ear trait candidate genes for co-localization with
QTLs identified by the three models in the current study. The
support intervals of QTLs and 500-kb flanking regions of GWAS
SNPs were used to evaluate the overlaps of the QTLs identified
here with the candidate genes. To test whether there was a signifi-
cant enrichment, we compared the number of candidate genes
overlapping the QTLs identified in this study with a null distri-
bution, obtained by randomly selecting 20 genes across the maize
genome, evaluating the co-localization with the QTLs detected
here and repeating the process 1000 times (P < 0.05).

Results

Genetic and phenotypic diversity of the 10 RIL populations

The 10 independent RIL populations with 14 genetically diverse
parental founders (Fig. S1) showed a broad spectrum of genetic
divergence of offspring RIL lines, revealed by principal compo-
nent analysis (Fig. S5). The distributions of ear length, ear row
number, ear weight and cob weight were approximately normal
for each RIL population, but exhibited clear variations among
the 10 RIL populations (Fig. S6). The broad-sense heritability
was generally high (H2 = 0.76–0.87; Table 1), which was similar
to a previous report on the maize female inflorescence traits
(Brown et al., 2011). All ear traits exhibited moderate correla-
tions with each other, except for ear weight, which showed
strong correlations with all other traits (Fig. S7; Table S2),
indicative of the central role of ear weight in the ear development
of maize.

Table 1 Summary of quantitative trait loci (QTLs) or single nucleotide
polymorphisms (SNPs) via three model-based approaches for four ear
traits in maize

Ear length Ear row number Ear weight Cob weight

H2a 0.87 0.86 0.76 0.83
SLMb 43/8,26 46/5,36 33/2,29 41/2,36
JLM 41 67 74 61
GWASc 202/32 173/34 103/17 122/24

aAverage broad-sense heritability among families on the line mean basis.
bTotal numbers of QTLs detected in 10 recombination inbred line (RIL)
populations (before slash), consensus QTL across populations (bold after
slash) and unique QTL in specific population (underline after slash).
cNumber of significant SNPs detected by the GWAS procedure (before
slash) and candidate SNPs by final backward regression (after slash).
H2, broad-sense heritability; SLM, separate linkage mapping; JLM, joint
linkage mapping; GWAS, genome-wide association study.
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Genetic dissection of ear traits via three models

Three model-based approaches were used to systematically dis-
sect the genetic bases of ear traits. In SLM, 33–46 QTLs were
identified for each ear trait (Table 1; Figs 1, S8). Detailed infor-
mation on the QTLs across the whole genome in the 10 RIL
populations is given in Fig. S9. Most detected QTLs had small
to moderate additive effects (Fig. 2a), whereas 25.2% had
effects that could explain > 10% of the phenotypic variance per
QTL (Notes S1). According to the physical overlap of the QTL
support intervals, we integrated two or more co-localized QTLs
detected in different genetic backgrounds into a single consen-
sus QTL, resulting in two to eight consensus QTLs for each
trait (Table 1), leaving most QTLs uniquely identified in speci-
fic RIL backgrounds (60.5–87.9%). We also performed meta-
analysis to integrate the SLM results of the 10 populations, and
found that there were 3–12 meta-QTLs for each ear trait, most
of which were overlapped with SLM QTLs (58–100%;
Notes S2). However, the QTL number detected by SLM was
much greater than the number of meta-QTLs (Notes S1),
which might be attributed to the heterogeneous backgrounds of

the 10 populations (Fig. S5), and is congruent with the afore-
mentioned finding of large amounts of uniquely detected QTLs
within populations. Although it was a bit of unbalanced for the
current data structure of the 10 RIL populations in sample size
and environment for collecting phenotypes (Table S1; Fig. S2),
but the resampling analysis revealed that this situation may lead
to a small fraction of type II errors in QTL detection with
SLM (i.e. 3.2% or 7.4%), and which is incapable to make a
significant statistical bias in the estimation of the proportion of
unique QTLs (P = 0.321 or P = 0.15; Fig. S10). In addition, we
found that a small fraction of QTLs were shared among traits,
possibly explaining the observed weak phenotypic correlations
(Fig. S7).

In JLM analysis, 41–74 QTLs were identified for each trait,
and these QTLs had small estimated effects with each explaining
a small percentage of the phenotypic variance (Table 1; Notes S3;
Figs 1, S8, S11). A small proportion of QTLs identified by JLM
showed significant QTL9 environment interactions, and the
effects were much smaller than the QTL main effects (Notes S3).
Pair-wise epistatic effects between JLM-identified QTLs were
tested via linear model analysis. We found that the inclusion of

Fig. 1 Overview of quantitative trait locus (QTL) results for ear length in maize. Top panel (Manhattan plot): the colored dots show the significance of
genome-wide blocks estimated by the joint linkage mapping (JLM) method. Blank diamonds indicate the physical positions of the 20 maize inflorescence
genes. Middle panel: colored rectangles indicate separate linkage mapping (SLM) QTL regions across the 10 recombination inbred line (RIL) populations.
The color density of the rectangles indicates the magnitude of the logarithm of the odds (LOD) values. Bottom panel: triangles indicate significant single
nucleotide polymorphisms (SNPs) identified by genome-wide association study (GWAS), where the blue upward triangles indicate that the minor allele
increases ear length relative to the major allele, whereas the green downward triangles indicate the opposite effect. Red dots indicate the candidate SNPs
identified by the final backward model. LRT, likelihood ratio test.
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epistatic effects in the additive model explained little additional
phenotypic variance (2.5–8.4%; Table S3), suggesting that addi-
tive effects play more important roles than epistatic effects in the
genetic variation of ear traits.

Overall, 122–202 significant SNPs were detected for each trait
by GWAS (Table 1; Figs 1, S8). To address the problem of
redundancy of the significant SNPs because of the strong linkage
disequilibrium among physically close SNPs, we performed a
backward regression on the significant SNPs. Eventually, 17–34
significant SNPs – referred to as candidate SNPs – were retained
in the model for each trait after backward elimination. Each of
the candidate SNPs explained a small fraction of the phenotypic
variation, with a maximum of 3.4% for ear length (Notes S4),
congruent with the findings of the JLM analysis (Notes S3).
However, all candidate SNPs jointly explained the majority of
phenotypic variance (R2 = 55.4–82.7%) and genetic variance
(R2 = 63.7–96.2%) for each trait (‘Full model’; Fig. 2b). Similar
to QTLs identified by JLM, the candidate SNPs from GWAS
rarely exhibited significant SNP9 environment interactions or

pair-wise epistatic effects on ear traits (Notes S4; Table S3), fur-
ther confirming that epistasis is unimportant relative to the addi-
tive effects.

Furthermore, we found that the exclusion of family effect from
the model caused a significant reduction in the explained pheno-
typic variance (R2 = 40.8–59.9%, ‘SNP model’; Fig. 2b), demon-
strating the large influence of population structure on the
phenotypic variation in the 10 RIL populations. In both JLM
and GWAS, we controlled the family effect in the models to
reduce false positives. However, the effects of causal QTLs are
possibly masked by the confounding of population structure in
cases in which QTLs segregate among RIL populations, but not
within RIL populations (Flint-Garcia et al., 2005). Further
expansion of the 10 populations would enhance the QTL detec-
tion power by breaking the connection between QTL distribu-
tion and population structure. Fortunately, the design and
analysis framework enabled us to easily expand the populations
via direct inclusion of existing segregating populations whenever
necessary.

(a) (b)

(c) (d)

Fig. 2 Effect distribution of quantitative trait loci (QTLs) and significant single nucleotide polymorphisms (SNPs) and cross-validation in maize. (a) Separate
linkage mapping (SLM) always shows relatively higher additive effects in both directions than the genome-wide association study (GWAS), followed by
joint linkage mapping (JLM). (b) Candidate SNPs jointly explain the majority of the phenotypic variation. The SNP model fits only the SNP effects, whereas
the full model fits both family and SNP effects. (c) Cross-validation results for candidate SNPs of ear length using nested association mapping (NAM) and
AM508 populations. (d) Overlaps in QTL results identified by the three models. The colored numbers show the QTL counts detected by the different
models. The numbers in parentheses are the candidate SNP counts identified by backward regression following GWAS.
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Genetic validation of associations and the determination of
candidate genes

We employed two diverse germplasm resources, NAM and
AM508 populations, to validate the final set of candidate SNPs.
Overall, there were 22% and 32% candidate SNPs for ear length
and ear row number validated in NAM (Figs 2c, S12; Notes S5).
This inconsistency of QTL detection was probably caused by the
very distinct genetic backgrounds of the present 10 RIL popula-
tions and the 25 RIL populations of NAM, which have been doc-
umented previously (Fu et al., 2013). However, 15–21% of the
candidate SNPs for ear traits were validated in the AM508 popu-
lation, excluding cob weight, in which only 8% of the candidate
SNPs were validated (Figs 2c, S12; Notes S5). It was only
marginally more significant than random at a statistical level of
0.05 (P = 0.008 for ear row number, P = 0.049 for ear length and
P = 0.074 for ear weight; Fig. S13). The AM508 population con-
tains more diverse lines (and thus more historical recombination
events) and more low-frequency SNPs than do the 10 RIL popu-
lations. This causes a reduction in statistical power for the
AM508 population to identify all but the most closely linked
SNPs, and only if they have a balanced allele frequency.

To gain further insights into maize ear traits, we attempted to
determine the candidate genes of four major QTLs by jointly uti-
lizing multiple approaches (Table S4). For example, in the
KUI3/B77 population, a QTL was mapped to the region of
133.3–139.5 Mb on chromosome 6 with a peak LOD of 12,
whereas, in the BY815/KUI3 population, the QTL was mapped
to the region of 132.9–139.9Mb with a peak LOD of 9 (Fig. 3a;
Notes S1). In addition, an HIF originating from a RIL offspring
of the KUI3/B77 population validated this QTL
(P = 4.39 10�3; Fig. 3b). When analyzing the 10 populations
simultaneously, JLM found the same QTL with an LRT value
equal to 14, whereas GWAS identified a candidate SNP at
137.7 Mb within the QTL region (Fig. 3c; Notes S3, S4). We
further conducted a regional association analysis using SNPs
from the 500 kb flanking the candidate SNP in the AM508 pop-
ulation (as linkage disequilibrium (LD), extended to 200–500 kb
in the 10 populations; Fig. S14). Gene GRMZM5G864815 is the
most likely candidate for the QTL on chromosome 6, based on
the physical position of the most significant SNP (Fig. 3d).
GRMZM5G864815, a homolog of thiamine pyrophosphokinase 1
(TPK1) in Arabidopsis, is capable of producing thiamine
pyrophosphate, which is involved in the major carbohydrate
metabolic pathways (Rapala-Kozik et al., 2009) and thus may
potentially affect ear development (Table S4). This hypothesis
was confirmed by the negative correlation between the expression
level of GRMZM5G864815 and ear length (r =�0.16,
P = 1.99 10�3; Fig. 3e). The eQTL and GWAS analyses also
revealed that the most significant SNP (i.e. PZE-106080641)
simultaneously influenced the expression level of
GRMZM5G864815 (P = 6.09 10�4, n = 340; Fig. 3f) and ear
length (P = 3.29 10�4, n = 339; Fig. 3f). These findings sug-
gested that GRMZM5G864815 might be a candidate gene for
ear length and that the phenotypic difference may be caused by
gene transcriptional regulation, but further studies are required

to validate this hypothesis. Three other QTLs with large effects
were similarly analyzed and candidate genes were identified
(Table S4; Figs S15–S17).

Model preference for the identification of QTLs with
different features

Although the SNPs identified by GWAS were significantly
enriched in the QTL regions (P < 0.001; Fig. S18), there were a
considerable number of QTLs or SNPs that were identified by
only one model (Figs 2d, S19). Different results of QTL map-
ping from SLM and JLM have been reported previously in the
NAM population, with a plausible explanation of a low fre-
quency of significant SNPs segregating within families (Buckler
et al., 2009). However, this difference may also be caused by a
lack of coincident segregation of SNPs and QTLs within one
family – that is if the SNP detected is not the causal variant for
the QTL. This has often been a problem with the use of flanking
markers to infer the presence of a QTL, especially in marker-
assisted selection. To determine the cause of the inconsistent
mapping results, we simulated a series of QTLs across 10 pseudo-
chromosomes with varying effect sizes and frequencies of QTLs
across different families. The same three statistical methods were
used to detect QTLs at a < 0.05. These simulated QTLs were
classified into four schemes (Fig. 4): (i) low-frequency QTLs,
where all three methods show an increased power as the QTL
effect increases (but more so with SLM); (ii) modest-frequency
QTLs, where the three methods show similar powers; (iii) high-
frequency QTLs, where GWAS has a significantly higher power
than JLM, followed by SLM; (iv) QTLs with effects in opposite
directions, where JLM has the highest power, followed by GWAS
and SLM. The difference in power reflects the difference in the
genetic architectures assumed by different methods. In SLM, the
QTL model is based on the biallelic QTL assumption within a
biparental cross-population. It has the highest power to detect
QTLs, as the biallelic markers (i.e. SNP markers) enable QTL
alleles to be represented in a perfect way. In JLM, the QTL
model assumes that the parents are independent and each parent
carries a different QTL allele in the multi-parent population (as
the multi-allelic QTL assumption). In GWAS, the QTL model
assumes that the parent carrying the same marker allele has the
same QTL allele in the multi-parent population (also as the bial-
lelic QTL assumption). In multi-parent populations, it is impos-
sible for the genetic architectures for all QTLs along the entire
genome to be completely consistent; there is therefore no ‘perfect
method’ available to identify all QTLs with different architec-
tures. Overall, methodological complementarity appears to be
critical for the systematic interpretation of complex traits.

Discussion

The majority of the genetic polymorphisms (> 50%) are rare
and many alleles are even private in specific maize lines; how-
ever, the functional importance of these rare variants remains
unclear (Myles et al., 2009; Fu et al., 2013). From our QTL
results, we found that many QTLs were exclusively identified
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Fig. 3 Quantitative trait locus (QTL) dissection for ear length on chromosome 6 in maize. (a) Two recombination inbred line (RIL) populations detected a
major QTL. (b) QTL validation using a heterogeneous inbred family analysis. The error bars indicate the standard deviation of ear length for each genotypic
group in the QTL peak. (c) Joint linkage mapping (JLM) analysis further dissects the QTL. Red shading indicates the QTL region; black dashed line indicates
the candidate single nucleotide polymorphism (SNP) position. LRT, likelihood ratio test. (d) Regional association for candidate gene identification. Right
and left arrows indicate genes on positive and negative DNA strands. The red dotted-dashed line indicates the most significant SNP and underlying
candidate gene. (e) Correlation between gene expression and ear length. (f) Genetic impact of significant SNPs on gene expression and ear length. In the
box plots, the horizontal line within the box indicates the median value; the bars of the box indicate the limits as 1.5 times the interquartile range from the
box; the dots outside the bars indicate the most extreme data points or possible outliers.
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by one specific model, but not by others (Fig. 2d). The results
of the simulation studies suggested two possible explanations:
(1) for high-frequency QTLs, JLM and GWAS boost the statis-
tical power compared with SLM because of pooling of the 10
RIL populations; (2) low-frequency QTLs are more easily
detected by SLM in one specific background where the allele
frequency of QTLs may be more balanced within a specific
population (Fig. 4). Motivated by the phenomenon that the
majority of QTLs detected by SLM were unique to a specific
population (Table 1; Fig. 1), we intuitively proposed a hypothe-
sis to explain why there are a considerable number of QTLs
which are method-specifically detectable: the QTLs that were
only detected by SLM, but not by JLM or GWAS, are proba-
bly low-frequency QTLs, or at least to some extent. The relia-
bility of this hypothesis and the frequency of the QTL allele
could not be determined directly in this experiment, but the
simulation data provided an opportunity to evaluate the robust-
ness of making such a hypothetical claim for the identified
QTLs, that is, the statistical power and FDR. According to the

simulation, the truth of this claim depends on the distribution
of QTL additive effects, where the QTLs must have the
approximate effect size (e.g. a� 0.3 times the phenotypic stan-
dard deviation) to reach the highest power (Table S5). The
FDR is high when the effects are too small, because both SLM
and JLM have no power to detect QTLs, whereas the power is
low when the effects are sufficiently large, because both SLM
and JLM have comparable power to detect QTLs (Table S5).
For the empirical data of ear traits, the additive effects of QTLs
detected by SLM were actually enriched at 0.30–0.33 times the
phenotypic standard deviation (Fig. 2a; Notes S1), which sug-
gests that the hypothetical claim that the QTLs detected only
by SLM, but not by JLM or GWAS, are probably low-
frequency QTLs in the present experiment is probably true.

A number of maize inflorescence genes were cloned through
mutagenesis (Table S6). These mutations produce dramatic
effects on maize ear development, which are probably deleterious
and therefore rare in natural germplasm. These genes were candi-
dates for ear traits and were tested for co-localization with QTLs

Fig. 4 Different models exhibiting a dynamic statistical power for quantitative trait locus (QTL) detection in a multi-parent design. Ten recombination
inbred line (RIL) populations were simulated using 200 RILs for each population. Left panel: 25 QTLs were simulated across 10 pseudo-chromosomes (to
mimic the maize genome) with an even distribution. Middle panel: each colored box indicates the presence of a QTL in a specific population. The color
density of the box indicates the additive genetic effects of the QTL in the RIL population, with a deeper shade denoting a greater effect. Right panel: the
horizontal bars represent the power of separate linkage mapping (SLM), joint linkage mapping (JLM) and genome-wide association study (GWAS)
methods.
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identified by the three models. The mutation genes were signifi-
cantly enriched among QTLs by SLM (P = 0.015), but not by
JLM and GWAS (P = 0.698 and P = 0.328, respectively;
Table S6; Fig. S20). This finding implies that SLM is more likely
to detect variants with reasonable effects that always underlie
low-frequency loci, whereas JLM and GWAS are more likely to
detect regulatory variants with allelic series, which provides indi-
rect evidence for the aforementioned hypothetical claim of low-
frequency QTLs in maize germplasm. In rice, a similar phe-
nomenon was observed: seven of the 10 cloned QTLs affecting
yield-related traits were found at a frequency of < 0.1 in diverse
germplasm (Table S7). A similar hypothesis, that genome-wide
causal variants are enriched for low-frequency alleles, was also
proposed for human GWAS (Gusev et al., 2013). Overall, the
low-frequency or rare allelic variants seem to be important for
complex traits across diverse species, which deserves attention in
applications in medicine, agricultural and other areas (Schork
et al., 2009). Based on the present data analysis, we estimate that
there are 59–82 QTLs or genes (most may be low-frequency vari-
ants) involved in the four ear traits surveyed in the diverse 508
maize inbred collection, which represents the majority of the
modern breeding program diversity worldwide (Table S8) (Yang
et al., 2011).

Linkage mapping and GWAS are very efficient methods to
unravel the genetic architecture of complex human and agricul-
tural traits, but, nowadays, only a few heritabilities of important
traits have been accounted for, such as human height (< 5%)
(Visscher, 2008). A low diversity of the mapping population,
small effect size of QTLs and low frequency of the causal variants
are the main factors that impede the comprehensive dissection of
the genetic basis of complex traits in linkage mapping or GWAS
(Manolio et al., 2009). Here, we have proposed a new multi-
parent designed population which permits the direct integration
of the currently existing population resources into a large-scale
genetic analysis. It provides a good alternative to improve genetic
resolution and boost power for the identification of minor-effect
and low-frequency variants via efficient utilization of the large
population size, high genetic diversity and multiple statistical
approaches. To fully explore the architecture of complex quanti-
tative traits, such as yield, it is necessary to integrate a large num-
ber of biparental populations into a large-scale analysis. Many
different types of biparental population are currently available
worldwide, and the time is ripe to integrate them in a single
large-scale analysis to improve the power of QTL detection in the
era of low-cost next-generation sequencing or SNP array technol-
ogy (Ozsolak & Milos, 2011; Grada & Weinbrecht, 2013).
Thus, the present design provides a very flexible and manageable
way to integrate available genetic resources in the research com-
munity, facilitating the comprehensive interpretation of the
genetic architecture of complex quantitative traits in plants.
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