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ABSTRACT

A detailed understanding of genetic architecture of mRNA expression by millions of genetic variants

is important for studying quantitative trait variation. In this study, we identified 1.25M SNPs with a

minor allele frequency greater than 0.05 by combining reduced genome sequencing (GBS), high-

density array technologies (600K), and previous deep RNA-sequencing data from 368 diverse inbred lines

of maize. The balanced allelic frequencies and distributions in a relatively large and diverse natural panel

helped to identify expression quantitative trait loci (eQTLs) associated with more than 18 000 genes

(63.4% of tested genes). We found that distant eQTLs were more frequent (�75% of all eQTLs)

across the whole genome. Thirteen novel associated loci affecting maize kernel oil concentration

were identified using the new dataset, among which one intergenic locus affected the kernel oil variation

by controlling expression of three other known oil-related genes. Altogether, this study provides

resources for expanding our understanding of cellular regulatory mechanisms of transcriptome variation

and the landscape of functional variants within the maize genome, thereby enhancing the understanding

of quantitative variations.
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INTRODUCTION

Identification of quantitative trait loci (QTLs) influencing the

expression level of genes (eQTLs) is fundamental to exploring

how genomic variants exert regulatory roles and thus

contribute to the understanding of phenotypic variations, from

cellular metabolites to morphological changes. Natural popula-

tions consisting of a large number of unrelated individuals are

frequently used for eQTL studies, in recent years in human be-

ings (Albert and Kruglyak, 2015) and plants (Fu et al., 2013), due

to a higher mapping resolution (Albert and Kruglyak, 2015).

Various advanced high-throughput technologies, for gene-

expression measurement and high-density genotyping, have

aided eQTL mapping studies. While it has been suggested

that RNA sequencing (RNA-seq) provides higher-quality expres-

sion data than expression microarrays (Mooney et al., 2013;

Wang et al., 2014), the different genotyping platforms are

thought to have their own respective strengths. For example,
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sequencing-based technologies, including RNA-seq and geno-

typing by sequencing (GBS, also known as reduced genome

sequencing), and array-based genotyping methods, are often

used in organisms with large genomes such as maize. Targeted

genotyping of known uniformly distributed variants makes data

analysis easier, although data on rare alleles are difficult to

obtain (Panoutsopoulou et al., 2013). RNA-seq is superior for

simultaneously measuring expression quantification and

genomic variation, but the identified variants are enriched within

the genic region and bias conclusions against intergenic non-

coding regulatory loci (Freedman et al., 2011). GBS, a cost-

effective single-nucleotide polymorphism (SNP)-discovering

approach, has been successfully applied, particularly in crop

populations with high diversity and large genomes (Elshire
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Figure 1. Creation of the Integrated Map.
(A) Numbers of individuals genotyped with

different platforms. 50K, Illumina MaizeSNP50

array; 600K, Affymetrix Axiom Maize 600K array;

Rseq, RNA sequencing for maize kernel (15 days

after pollination [15DAP]); GBS, genotyping by

sequencing.

(B) The consistency rates between original

overlapped genotypes derives from 600K and

RNA-seq with different missing rates of RNA-seq.

The missing frequency less than 91% is selected,

under which the coincident ratio is 97.26%.

(C) Accuracy rates for imputation with different

missing rates of merged genotypes. The missing

frequency less than 90% is retained, and the

reliability for whole genotypes without missing

larger than 90% is 95.89%.

(D) Distribution of missing rates before and after

imputation.

(E) The contribution to imputation accuracy of

different classifications based on different geno-

typing methods and panels of individuals. The

proportion within each type represents the ac-

curacy rates of imputation. As 50K and GBS

covers most of the lines and the data are well

distributed among loci, we assumed that they

contributed uniformly both in loci and individually,

and we mostly focused on the subset derived

from 600K and RNA-seq.
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et al., 2011; He et al., 2014). However, the high ratio of missing

data and uneven variant number among different individuals

make further data analysis difficult and may impair QTL

identification.

Moreover, the relative importance of protein-coding and non-

coding regulatory loci to morphological and physiological evolu-

tion in particular has been argued for almost half a century

(Britten and Davidson, 1969; Carroll, 2008; Albert and

Kruglyak, 2015). Recently, non-coding regulation has attracted

considerable attention, especially with the discovery of regula-

tory non-coding RNAs. However, most conclusions have been

drawn from case studies and lack genome-wide validation,

while the number of uncharacterized non-coding transcripts

has increased significantly. It is important to uncover the regu-

lation of expressed genes or proteins, cellular metabolites,

and observed traits by distant non-coding sequences. Many

previous studies were performed by using biparental segre-

gating populations or association mapping populations with

limited sample size or low-density markers, resulting in low res-

olution and the inability to analyze distant regulation factors

(Albert and Kruglyak, 2015). In this study, we created an

integrated map that combines variants from deep RNA-seq,

GBS, and various arrays with densities of 50K (MaizeSNP50

BeadChip; Ganal et al., 2011) and 600K (Affymetrix Axiom

Maize Genotyping 600K Array, hereafter 600K; Unterseer

et al., 2014) in an enlarged diverse collection with 540 maize

inbred lines. Through incorporating the previous measurement

of the expression of 28 769 genes in the maize kernel (Fu

et al., 2013) from 368 diverse unrelated individuals, we aim to:

(1) provide insights into the regulatory landscape of the maize

kernel; (2) dissect regulatory causality and links to phenotypic

variations; and (3) elaborate regulatory ‘‘temporal-spatial’’
characteristics, including genomic regulation hotspots and

regulation patterns in multiple tissues.
RESULTS

Creation of a Reliable Integrated Variation Map

A global collection of 540 inbred lines was genotyped in the pre-

sent study, of which 513 lines were previously genotyped with

MaizeSNP50 BeadChip (Ganal et al., 2011), a subset of 368

lines was genotyped by deep RNA-seq (Fu et al., 2013), 469

lines by GBS, and 153 lines by 600K array (Figure 1). High

consistency between different genotyping methods was

observed, at least 96.1%, with an overall average of 97.4%

(Table 1). However, as three lines (2%) and 585 loci (3%) had

a consistency of less than 95% for the 600K array compared

with the 50K chip (Supplemental Figure 1), which might be

caused by residual heterozygosity of inbred lines, these were

eliminated from further analyses. After comparing the variants

between RNA-seq and 600K, we found that the consistency

ratio decreases as the missing rate of RNA-seq increases,

and reaches a 95% consistency when the missing rate reaches

91% (Figure 1B). Consequently, genotypes with a missing rate

higher than 91% in RNA-seq were excluded from further

analyses. More SNPs were retained in comparison with the

previous study (Fu et al., 2013), which used a 60% missing

rate cutoff.

All filtered variants (see Methods) from the four different

platforms were combined to improve the accuracy of

imputation. Simulation results showed that with a missing rate

of greater than 90%, accuracy drops significantly, from higher

than 90% to lower than 75% (Figure 1C); thus only the
Molecular Plant 10, 414–426, March 2017 ª The Author 2016. 415



Index 50K 600K GBS Rseq_rawa Rseq_M91%b

50K – 96.97%/100% 96.12%/99.55% 96.32%/100% 96.53%/100%

600K 19 495 – 98.48%/100% 97.13%/100% 97.53%/100%

GBS 5885 39 131 – 97.57%/100% 97.93%/100%

Rseq_raw 12 691 141 958 203 580 – –

Rseq_M91% 11 363 123 948 161 352 – –

Table 1. Consistency between Different Genotyping Methods.
The numbers in lower triangle of the matrix represent the numbers of overlapping SNP loci considered between different genotyping platforms; the

percentages in upper triangle are consistency rates for the overlapping loci identified by each pair of genotyping platforms (mean/median).
aRaw genotypes from RNA-seq.
bRaw genotypes for RNA-seq filtered by missing rates larger than 91%, which was included in further analysis.
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merged SNPs with a missing rate of less than 90% were

retained. The removing-then-imputation and imputation-then-

removing strategies were compared, and the former, with a

higher imputation accuracy (96.93% versus 95.89% on

average), was applied for the final analysis. By applying the

optimized imputation parameters to all merged SNPs, the

median missing rate dropped significantly from 72% to 5% after

imputation (Figure 1D). In total, 2.65M SNPs were obtained

from 540 inbred lines, with more than half (1.4M, 52.8%)

being rare (minor allelic frequency [MAF] of <5%). By

examining the contribution to imputation accuracy of the four

genotyping platforms, we found that the additional data from

the 600K array greatly improved imputation accuracy

(Figure 1E) and that SNPs genotyped by 600K array both for

individuals and loci always showed high accuracy of

imputation.

To evaluate the reliability of our imputed integrated variation

map, we collected the variants identified by resequencing of

PCR products on the same panel in different laboratories and

with different times of reproduction, and found that the average

consistency of the total 477 different overlapped loci was

94.53% (Supplemental Table 1 and Supplemental Figure 2).

As mentioned above, a few loci brought down the average

consistency (Supplemental Figure 3A), and the number of

resequenced lines with these inconsistencies was significantly

lower (P = 0.003; Supplemental Figure 3B) than the number of

lines with highly consistent loci, suggesting a high residual

heterozygosity rate in some lines. Another reason for the

inconsistency may have been the presence of short

(especially single-nucleotide) tandem repeats with small InDels

at some loci (Supplemental Figure 4), which made SNP calling

more complicated and prone to error. Interestingly, the rare

(MAF <5%) subset had a slightly higher accordance ratio

(95.25% versus 94.13%), which suggests that allele frequency

has little effect on SNP calling. The integrated map has the

highest reported density (2.65M loci), the highest number of

individuals (540), and a good distribution of SNPs on the

chromosomes, with good coverage in intergenic regions

(Figure 2). A large number of variants are predicted to

produce severe phenotypes or loss of function (Figure 2B),

especially those rich in splice-related variants, which always

change the function of encoded proteins. Linkage disequilibrium

decays rapidly in this panel and implies high resolution (espe-

cially compared with array-based methods) in association

analysis (Figure 2C).
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Distant eQTL and Non-coding Sequences Are Dominant
for Regulation

Fu et al. (2013) performed large-scale eQTL analysis based on the

SNPs derived from RNA-seq. In this study, the integrated map

was used to identify the regulatory factors affecting gene expres-

sion by using the linear mixed model (LMM; Yu et al., 2006),

incorporating population structure, hidden confounding factors,

and relatedness, as in the previous study (Fu et al., 2013). As

expected, many more associations with gene expression under

a strict cutoff (P < 7.97 3 10�7; 1/n) were identified, of which

almost one-quarter (4397 of 18 243) were new compared with

the previous study (Fu et al., 2013). For traits identified with

eQTLs in both studies, more than half (62%) included newly

identified eQTLs (Figure 3). The average number of eQTLs

identified for each trait increased significantly when using the

new variation map (3.35 versus 1.14), and most of the novel

eQTLs were distant to the gene involved (Figure 3B). As a

result, the ratio of distant eQTLs was higher than previously

reported (93% versus 45%). This was also true when a stricter

threshold was used (larger eQTL distance considered as local,

Figure 3C) and with lower P value cutoffs for lead SNP (until the

P value reached 1 3 10�20; Supplemental Figure 5). Most lead

eQTL SNPs (71.6%) were >100 kb away relative to their

regulated target genes and enriched in the 1 Mb region, while

another 8% of the lead SNPs for distant eQTL SNPs were

located on different chromosomes (Figure 3D). The local eQTLs

tended to have larger effects, which was consistent with the

previous study; however, the sum of explained phenotypic

variations by either local or distant eQTLs was larger than

previously determined (Supplemental Figure 6A). The

distribution of lead SNPs for local eQTLs showed peaks at the

50 and 30 ends of genes (Supplemental Figure 6B), which was

consistent with previous conclusions (Mazumder et al., 2003;

Wilkie et al., 2003; Ringnér and Krogh, 2005; Fu et al., 2013).

The distributions of associated lead SNPs for local and distant

eQTLs were compared, and significant differences were found

for all of the comparison categories classified by different pre-

dicted effect consequences (Figure 3E and Supplemental

Figure 7). An enrichment was observed for synonymous SNPs

both for local and distant eQTLs located to protein-coding genes,

which suggested the importance of synonymous SNPs in expres-

sion regulation, while missense ones likely contributed more to

structural changes. Lead SNPs were less likely (measured by

percentage) to be located within non-coding regions even



Figure 2. Features of the New Integrated Map.
(A) The integrated map has a more uniform physical distribution; it has a

higher proportion of SNPs in genic regions than array-basedmethods and

a higher proportion of SNPs in intergenic regions than RNA-seq.

(B) The integrated map identifies a larger number of variants that may

cause severe phenotypic effects including loss of function.

(C) LD decay is intermediate, with a good balance between resolution and

power. This ensures almost single gene resolution unlike array-based

methods (50K and 600K) and confers high power to identify associated

variants relative to sequence-based technologies (RNA-seq and GBS).
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though the number of variants was higher. However, a significant

enrichment was also found for distant eQTLs within intergenic

and intron regions, which suggests a potential distant regulatory

role for non-coding sequences.

Distant-Acting eQTLs Clustered in Hotspots

A region affecting expression of many distant genes is called in

this study a distant-acting eQTL hotspot. We applied a new

statistical approach that identified hotspots taking into account

dynamic genomic density (Silva et al., 2014) to identify robust

hotspots, even with different window sizes (Supplemental

Figure 8). In total, 518 hotspots (Padjusted < 0.05; Figure 4 and

Supplemental Table 2) were identified, covering 1.8 Mb of the

genome (less than 0.1% of whole genome) and averaging

3.42 kb in size, which regulate the expression of 2090 genes

(7.3% of testable genes and 11.5% of genes with identified
eQTLs). Interestingly, some hotspots were found in gene-poor re-

gions on several chromosomes (Figure 4A and Supplemental

Figure 8). Of the total number of hotspots, 39% (or 204) were

fully within genes, another 59% (or 307) overlapped with

genes, and the remaining 15% (79) were completely located in

non-genic regions. The importance of distant regulation for

non-coding regions was recognized by a recent study (Albert

and Kruglyak, 2015). In another study, 98 trans-hotspots

(covering 141 Mb or 7% of the maize reference genome) were

identified using a biparental population (Li et al., 2013b).

Seventeen (17.3%) overlapped with our present results,

including the most significant one in present study and two of

the top 10 hotspots in previous work (Li et al., 2013b).

One distant-acting eQTL hotspot (Chr1: 47 905 716.47 907 183;

P = 1.36 3 10�22; Figure 4A) was located closely upstream of

several A-type R2R3 Myb-like transcription factors, including

p1 (pericarp color1, GRMZM2G084799), p2 (GRMZM2G057027),

and some others (GRMZM2G129872, GRMZM2G016020). The

hotspot was also found to be associatedwithmany flavonoidme-

tabolites (Figure 4B; thesemetabolic phenotypes weremeasured

by Wen et al., 2014), and also regulated the expression of a

number of genes (Figure 4B and Supplemental Figure 9), more

than half of which (7 of 11 or 63.64%) were related to a

flavonoid metabolic pathway and were determined to be

controlled (or affected) by p1 (Morohashi et al., 2012). This

finding contributes to the understanding of the regulation of the

flavonoid metabolic pathway.

Hotspot analysis presents anenhancedviewof complex regulato-

ry networks. RNA-binding proteins (RBPs) play important roles in

RNA metabolism by governing all aspects of post-transcriptional

gene regulation (Dreyfuss et al., 2002), including mRNA

stabilization, alternative splicing, mRNA localization, and

even chromatin modification. In addition to playing a role in the

diverse developmental processes, they are also involved in

hormone signaling to help plants to adapt to rapidly changing

environments (Lorkovi�c, 2009; Ambrosone et al., 2012). We

found two hotspots located upstream and downstream of a

zmRBP gene (GRMZM2G171518) that has been shown to affect

27 downstream genes (Figure 4A and 4C, Supplemental

Figure 10, and Supplemental Table 3), including a gene involved

in nuclear mRNA splicing (GRMZM2G401561), two auxin-

binding proteins (GRMZM2G078508 and GRMZM2G064371),

an NAC transcription factor (GRMZM2G083347) involved in auxin

signaling and the regulation of plant stress responses (Olsen et al.,

2005; Nuruzzaman et al., 2013), a DNA-directed RNA polymerase

(GRMZM2G129457), a ubiquitin-like modifier of autophagy-

related 8d (atg8d, GRMZM2G134613), a PHD finger protein

(GRMZM2G115424) involved in chromatin-mediated gene

regulation, and a set of enzymes involved in diverse metabolic

pathways. These targets and their downstream-regulated genes

together constitute a complex regulation network, and the

RBP gene is likely to be one of the key nodes.
Spatiotemporal Gene-Expression Patterns

Transcriptome-level regulatory changes in gene expression are a

flexible and dynamic means of adaptation (Liu et al., 2015), and

are involved in the determination of different cell types. In the

present study, the expressed genes were first classified into
Molecular Plant 10, 414–426, March 2017 ª The Author 2016. 417



Figure 3. Distant Regulation and the Signif-
icance of Non-coding Regions.
(A) The identification of eQTLs by a new inte-

grated map and its comparison with previous

study (Fu et al., 2013). The blue rectangle

represents the number of traits for which eQTLs

were both identified, while the number in the

yellow rectangle represents traits for which

novel eQTLs were identified in the present

study. Therefore, the number in blue font

represents the traits for which eQTLs were

consistently identified in both studies, the

number in light yellow font represents the

number of traits for which additional eQTLs were

found, and the dark orange number represents

traits with non-overlapping new eQTLs. Traits in

the red rectangle (and red font) were those for

which novel eQTLs were found in this study but

not in the previous study.

(B) The ratio of distant and local eQTLs for

additional eQTLs for traits that identified with

eQTLs (called new eQTL) and for traits that were

not found in eQTLs previously (marked as novel

Trait; Fu et al., 2013) with the same threshold in

the present study.

(C) The ratio of distant and local eQTLs at different

thresholds. 0.56M shows the results from Fu et al.

(2013); the other three methods used to

distinguish local and distant eQTLs included the

most lenient (‘‘new,’’ same as in Fu et al., 2013)

and the most restrictive (‘‘new_500K_100K,’’ see

Methods).

(D) Distribution of distance between lead SNPs

and their regulated targets located on the same

chromosome.

(E) Comparison of variant percentages in each

effect type among distant eQTLs, local eQTLs,

combined associated sets (local + distant), and

the simulated distribution of reference random ones. A Chi-square goodness-of-fit test was used in comparison between ratios from local and distant

eQTLs, and pnorm function in R was used to calculate the probabilities for each effect type for the other three classes to satisfy the random reference

distribution.
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regulatory levels (Figure 5 and Supplemental Figure 11A): the

most upstream ones only play regulatory roles (Only_Reg), and

the most downstream genes are being regulated, while the

intermediate level genes are both regulators and subject to

regulation (named ‘‘Both’’). Interestingly, genes at the upstream

and intermediate levels of regulatory networks were expressed

at significantly higher levels than genes only being regulated

(P = 1.31 3 10�8 and 1.96 3 10�6, respectively; Figure 5C) and

displayed a lower expression variability than genes being

regulated (measured by coefficient of expression variation; P =

2.25 3 10�67 and 6.03 3 10�130, respectively; Figure 5D). It

should be noted that this trend was seen not only in the present

study (whole kernel of 15 days after pollination), but also

throughout the life cycle of maize and in different tissues (data

from Chen et al., 2014).

Regulators acting only as distant eQTLs (Only_Dist; Supplemental

Figure 11B) were found to be expressed significantly less than

those uniquely playing local regulatory roles (Only_Local) and

those involved both in distant and local regulation (Both_R) in

different tissues (Supplemental Figure 12A). Those acting only

as distant regulators (Only_Dist) also showed larger coefficient
418 Molecular Plant 10, 414–426, March 2017 ª The Author 2016.
of expression variations (Supplemental Figure 12B). This

expression divergence between local and distant eQTLs

may reflect different effects on phenotypic variation. Gene

ontology enrichment analysis provided additional support, since

various binding molecular functions such as cofactor binding,

nucleoside binding, and coenzyme binding were enriched (false

discovery rate <0.05) for Only_Dist types, and several catalytic

activity function terms, including hydrolase activity, molecular

transducer activity, nucleoside-triphosphatase activity, and pyro-

phosphatase activity,were enriched forOnly_Local types.Most of

the genes examined are expressed at similar levels across tis-

sues, while only a small number of genes are involved in tissue-

specific regulation. Separately, we compared genes regulated

by distant eQTLs (RB_Dist) with genes regulated only by

local eQTLs (RB_Local) and genes regulated by both classes

of eQTLs (RB_Both; Supplemental Figure 11C). The genes

regulated only by distant eQTLs (RB_Dist) were expressed at

significantly lower levels than the other two types (Supplemental

Figure 13A), and displayed larger expression differences

between tissues (Supplemental Figure 13B). Overall, the distant

functional regulators and their regulated targets tend to be

more spatiotemporally variable, and thus can contribute to



Figure 4. Distant-Acting eQTL Hotspots and the Identification of Complex Regulatory Networks.
(A) The identification of distant-acting hotspots. Two hotspots are displayed along with their regulated targets on themaize chromosomemap, and the①

and② represent the p1 and zmRBP cases, respectively; centromeres are colored gray. b, heatmap showing the counts of targets within specific distant

eQTL intervals; c, the histogram of significance (measured by �log(P value)) of each hotspot; d, links representing the association between the distant

hotspot and their regulated genes.

(B)One of the distant-acting hotspots located in chromosome 1 (large pink circle, region from 47 905 716 to 47 907 183). The pink nodes represent distant

regulated expressed genes and the light blue nodes represent associated cellular metabolites, all of which are flavonoids. The width of each edge was

correlated with the significance of association (measured by square root of �log(P value)).

(C)One of themaize RNA-binding proteins (RBP, GRMZM2G171518) is characterized as a significant distant-acting hotspot, while it is directly associated

with many other genes (blue nodes), which further regulate more genes with gray nodes.
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tissue-specific characteristics, consistent with the previous study

(Albert and Kruglyak, 2015).
eQTLs Link Genetic Variation with Phenotype Changes

In previous research (Li et al., 2013a), 26 loci associated with

kernel oil concentration were identified and more than one-third
of the loci were shown to be significantly associated with

the expression level of candidate genes based on 560K

SNPs derived from expressed sequences within 368 lines.

Doubtlessly a higher density of markers and a bigger sample

size would improve detection power and resolution (Yang et al.,

2014). In this study, the newly integrated map with 1.25M SNPs

and more than 500 lines has been shown to improve detection
Molecular Plant 10, 414–426, March 2017 ª The Author 2016. 419



Figure 5. The Classification and Temporal-Spatial Expression of Genes in Different Regulation Layers.
(A) The expressed genes in this studywere classified into three different regulation layers: only playing regulatory roles (Only_Reg, upstream layer), only to

be regulated (Only_Trait, downstream layer), and as both regulator and to be regulated (Both, intermediate layer).

(B) The number and ratio of each layer and the percentage of different regulation layers. The three coordinates are subset genes classified into different

regulation layers, while the different colors represent the different chromosomes (chromosomes 1 to 10 from inside to outside). Each link represents the

regulation relationship and is colored as the corresponding chromosome from which eQTL is derived. To highlight the distant ones, we set the trans-

parency for local regulated ones higher (with much more transparency) than distant regulations. Upstream and downstream regulation denote the

regulation from upstream to intermediate layer and from intermediate to downstream layer, respectively. Direct regulation represents the direction of

regulation from upstream layer to downstream layer.

(C) Comparison of gene-expression levels in different layers and tissues (tissue represented on the x axis).

(D) The distribution of the range of expression levels among different tissues (measured by coefficient of variation, CV), separately for genes from different

regulation layers (expressed data for multiple tissues from Chen et al., 2014).
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power (Figure 6 and Supplemental Figure 14). Thirteen new loci

affecting total oil concentration were identified compared with

the previous results (Table 2). Of the previously identified 26,

19 loci were also identified using the new probability threshold

(8.0 3 10�7 for new versus 1.8 3 10�6 for old). More

importantly, the more balanced integrated map provided the

opportunity to explore the potential functions of non-genic se-

quences that had not been fully studied previously. Several new

QTLs were mapped to intergenic regions, including one at the

end of chromosome 4 (Figure 6 and Table 2). A total of eight

SNPs (physical position from 141 969 034 to 142 149 527) were

significantly associated with total oil concentration, and notable

phenotypic differences exist between different alleles at these

loci (Figure 6B and Supplemental Figure 15A). This intergenic

region was also determined to be regulating expression of

another three distant (>193 kb) genes (P = 2.31 3 10�11 for

FADD, GRMZM2G066618; P = 2.14 3 10�19 for GPI,

GRMZM2G162670; and P = 5.37 3 10�15 for GLTP1,

GRMZM2G125556; Figure 6A) whose expression level was

positively correlated with the phenotypic variation (Figure 6C

and Supplemental Figure 15B). Very low linkage disequilibrium

(LD) observed between the associated SNPs and the variants
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within their targets (Figure 6D) indicated that the association

could not be confused with local genome structure.

Interestingly, all the eight lead SNPs displayed potentially

epistatic interaction (P % 1 3 10�4) with the upstream

candidate (GRMZM2G066618) but not the others

(Supplemental Figure 16A), and many other non-significant

SNPs located in the intergenic region interacted with the

candidate gene GRMZM2G125556 (Supplemental Figure 16B;

P % 1 3 10�4). The gene homologous to GRMZM2G066618 in

Arabidopsis is AT4G28570, which encodes long-chain fatty

alcohol dehydrogenase (FADD) and participates in fatty acid

metabolism (Okuley et al., 1994; Li-Beisson et al., 2010).

GRMZM2G162670 is a lipid transfer protein and functions in

the first step of the glycosylphosphatidylinositol (GPI) anchor

biosynthesis that is related to fatty acid remodeling (Maeda

et al., 2007; Li-Beisson et al., 2010; Loizides-Mangold et al.,

2012), while GRMZM2G125556 is a glycolipid transfer protein

(GLTP1), which is also involved in the oil metabolism pathway

(Li-Beisson et al., 2010). The function of the non-genic locus

was unclear since no long non-coding RNA (Li et al., 2014),

candidate microRNA (Zhang et al., 2009), or even any

expressed sequence (Fu et al., 2013) were located with high



Figure 6. The Improved Statistical Power in
GWAS and Co-localization of a Novel QTL
for Kernel Oil Concentration with eQTLs
for Three Oil-Related Genes.
(A) Comparison of GWAS results among ge-

notypes from different platforms for kernel oil

content. In the Manhattan plots, the dashed hor-

izontal line represents the significance cutoff

(P = 9.833 10�7). The novel QTL on chromosome

4 is significantly associated with kernel oil con-

centration and expression of three genes (FADD,

GRMZM2G066618; GPI, GRMZM2G162670; and

GLTP1, GRMZM2G125556).

(B) The divergence of oil concentrations between

different alleles of the lead SNP.

(C) Positive correlation between gene-expression

level (GLTP1, GRMZM2G125556 as a case) and

oil concentration.

(D) Pairwise LD between associated SNPs and

SNPs within three regulated genes. Triangles

represent significant SNPs and squares represent

candidate genes. The shading from black to white

represents the decreasing intensity of LD.

(E) Illustration of the co-localized intergenic

QTL in association with oil concentration and

gene expression.
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confidence in the region. Based on the eQTL and genetic

analysis, we propose a model in which the unknown non-genic

sequence regulates the expression of the three oil-related genes

that together affect oil concentration in the kernel. However,

since the whole kernels were used for RNA-seq experiments in

the present study and the oil concentration is considered to

be associated with the embryo size (where nearly all oil is

synthesized), the newly identified intergenic QTL could regulate

oil concentration by altering the embryo size. Further detailed

work is needed to resolve these issues.

DISCUSSION

Distant Regulation Is Critical

Marker density and population size are two major factors

affecting genome-wide association studies (GWAS) (Yan et al.,

2011). In the present study marker density was increased from

560K to 1.25M with MAF >0.05, particularly the markers from

non-genic regions, in a well-studied association mapping panel,

and the panel size was enlarged from 368 to 540. The integrated

high-density map and enlarged population size increased the

QTL detection power and resolution, and presumably had a
Molecular Plant 10, 41
higher sensitivity for detecting weaker

distant eQTLs, which provided the oppor-

tunity to reassess previous studies. Many

theoretical and experimental studies have

already proved that genetic long-range

control for gene transcription is vital to

normal development (Kleinjan and van

Heyningen, 2005; Kleinjan and Lettice,

2008; Narula and Igoshin, 2010; Van

Heyningen and Bickmore, 2013; Xiang

et al., 2014). In the previous study with

368 inbred lines (Fu et al., 2013), it was
found that the number and effect of local eQTLs was greater

than that of distant eQTLs, based on expressed sequence-

derived markers. The higher density and more balanced marker

distribution was used to reanalyze the eQTLs with several new

findings: (1) Expression QTLs for 25% more genes were identi-

fied; (2) 62% of genes were identified with more eQTLs; (3) the

explained effect size was increased both for local and distant

eQTLs; and (4) more importantly, the ratio of distant eQTLs

increased from less than 45% to 72% with the same criterion,

which implies that distant regulation might be more important

than previously thought (Holloway et al., 2011; Battle et al.,

2014; Bryois et al., 2014).

Some eQTL mapping studies (Holloway et al., 2011; Battle

et al., 2014; Bryois et al., 2014) found more local eQTLs than

distant eQTLs; however, distant regulation has been

frequently proposed as a driver of phenotypic variation

(especially for disease susceptibility in humans; Rotival et al.,

2011; Westra et al., 2013). An earlier computational model

also suggests that distant enhancer-bound proteins can

significantly change the level of gene expression (Narula and

Igoshin, 2010). The recently developed three-dimensional
4–426, March 2017 ª The Author 2016. 421



Candidate genea Chr Positionb Allele MAF P value eQTLc Location Annotationd

GRMZM5G814718 1 46 413 734 C/T 0.06 5.76 3 10�8 NS Genic Multicopper oxidase

GRMZM2G320325 1 55 071 146 A/T 0.06 5.78 3 10�7 8.46 3 10�22 Genic Uridine kinase

GRMZM2G100650 1 267 335 457 C/A 0.10 6.12 3 10�7 7.92 3 10�9 Genic Glycolipid transfer protein, GLTP

GRMZM2G425999 4 55 075 588 T/C 0.06 4.32 3 10�7 2.90 3 10�18 Genic Transmembrane transporter activity

GRMZM2G125556 4 141 969 034 G/A 0.11 4.66 3 10�7 5.37 3 10�15 Non-genic Glycolipid transfer protein, GLTP

GRMZM2G162670 4 142 046 103 T/A 0.11 2.15 3 10�7 2.14 3 10�19 Non-genic GPI anchor

GRMZM2G019358 4 228 628 353 C/G 0.07 3.13 3 10�8 1.08 3 10�13 Genic Unknown

GRMZM2G139765 5 188 667 327 G/A 0.09 1.32 3 10�8 9.20 3 10�13 Genic Transcription factor

GRMZM2G032095 7 96 823 747 C/A 0.06 6.53 3 10�7 NS Non-genic Catalytic activity

GRMZM2G127687 8 26 859 184 G/T 0.06 3.29 3 10�7 5.98 3 10�18 Geneic ATP binding

GRMZM2G028570 8 71 717 794 A/C 0.05 3.46 3 10�7 NS Genic Transporter activity

GRMZM2G029856 9 107 405 589 G/T 0.07 6.96 3 10�8 3.57 3 10�9 Non-genic UDP-glucose 4-epimerase

GRMZM2G098179 9 116 898 313 G/T 0.06 6.11 3 10�9 1.26 3 10�9 Non-genic Myb MYB30

Table 2. List of Novel Loci and Candidate Genes for Oil Content Identified Using the New Integrated Map.
aA candidate gene in the locus or the nearest annotated gene to the lead SNP.
bPosition according to version v2 of maize reference sequence.
cP value for the SNP located within 100 kb of candidate gene. NS, not significant (P > 9.83 3 10�7).
dEach candidate gene is annotated according to MaizeGDB (Andorf et al., 2016).
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genomic architecture technology (Feng et al., 2014; Rao et al.,

2014) sheds new light on the interactions between enhancers

and their target promoters and aids in identifying the genetic

and epigenetic regulatory elements, and, thus, the underlying

long-range regulatory mechanisms (Noonan and McCallion,

2010).

As regular practice for RNA-seq, the reads from samples were

mapped to the reference genome to obtain expression quantifi-

cation; thus the substantial genomic variation among diverse

individuals would potentially cause mapping differences, which

would consequently affect local eQTL mapping. It was found in

the present study that the individuals with reference allele

indeed ‘‘expressed’’ significantly higher than non-reference

ones in general. Aligning reads to variant-corrected reference

genomes could bring more accuracy to both expression qua-

ntification and eQTL mapping, and should be considered in

future studies.

Non-coding Regulatory Sequences in Maize

Several studies have disclosed the mechanisms by which non-

coding regions functionally contribute to disease (Kleinjan and

van Heyningen, 2005; Visel et al., 2009). It was also found that

TASs (trait-associated SNPs) were enriched in non-genic regions

(Freedman et al., 2011; Li et al., 2012) and that nearly half of the

large number of trans-acting eQTLs associated with splicing

are located in non-genic regions in maize (Thatcher et al.,

2014). This study provides an opportunity to understand the

distribution of these putative regulators on the genome-wide

level. It was found that, for distant eQTLs, 42% of lead SNPs

were located in the non-genic regions (78% in non-coding

sequences), which might have been missed in the previous study

(Fu et al., 2013). Themaize genome contains a large proportion of

repetitive elements, including retrotransposons and transposons,

which are often found to be expressed and involved in expression

regulation (Gebert and Rosenkranz, 2015).
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eQTL Analysis Helps Reveal the Gene Regulatory
Network and Genotype–Phenotype Relationship

With the recent accumulation of high-density genotypic data for

large numbers of individuals across many species and related

high-throughput phenotypic data, much effort is being devoted

to exploring the genomic regions that underlie phenotypic

changes for various traits. GWAS is a powerful approach for iden-

tifying candidate associations by examining the frequencies of

different genotypes with respect to phenotypes, but is insufficient

for offering insight into biological mechanisms and defining the

functions of the genes involved. Study of eQTLs could provide in-

sights into the gene-expression effects of associated variants

(Westra and Franke, 2014) and help to unravel the genotype–

phenotype relationships. As shown in the cases of p1 and the

novel intergenic QTL on chromosome 4 with respect to

flavonoid content, cob color, and oil concentration (Figures 4

and 6), understanding aspects of transcriptomic regulation can

help define complex regulatory networks. This is especially true

for those eQTL hotspots in which a number of genes are

controlled by a common eQTL. Co-localizing eQTLs and QTLs

could be important for exploring the genetic architecture of

complex traits. For example, the study of plant development

and phenotypic variation in Populus (Drost et al., 2010),

combining association mapping and the co-expression network,

resulted in the identification of candidate genes underlying gluco-

sinolate traits (Chan et al., 2011). Studies such as these promise

to increase knowledge of regulatory sequences and thereby

allow for accurate mechanistic interpretations.
METHODS

Plant Germplasm, RNA Sequencing, and Phenotyping

The 540maize inbred lines included in this studywere from a global collec-

tion (Yang et al., 2011) including representative temperate and tropical/

subtropical inbred lines. Detailed information on this panel can be found

in Supplemental Table 4. A subset of 513 lines were genotyped (Yang
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et al., 2011) with the Illumina MaizeSNP50 array (Ganal et al., 2011). Poly-

A+ RNA, collected from the whole kernels at 15 days after pollination, was

sequenced from 368 selected diverse lines, and 560K SNPs with MAF

>0.05 were previously identified (Fu et al., 2013). A total of 28 769 genes

expressed in more than 50% of the inbred lines were used for further

analyses, and the overall distribution of expression levels for each

gene was normalized using a normal quantile transformation (qqnorm

function in R, http://www.r-project.org). More details on library

construction, sequencing, SNP detection, positive control of SNP

accuracy, and quantile normalization of expression are provided as

additional notes in Supplemental Information. In the present study, 469

and 153 lines were further genotyped by GBS (Elshire et al., 2011) and

Affymetrix Axiom Maize 600K array (Unterseer et al., 2014), respectively

(Figure 1A). The oil concentration of the mature kernel was measured in

multiple environments, as described in the previous study (Li et al., 2013a).

Construction of Reduced Representation Libraries and GBS

Nucleic DNA extraction from young leaves (0.4 g) followed the method of

Murray and Thompson (1980). DNA concentrations were normalized to

10 ng/ml. ApeKI (NEB, R0643L) restriction enzyme was used to digest

DNA at 75�C for 2 h. DNA fragments were ligated to adapters with

different indexes for each line using T4 DNA Ligase (NEB, MK0202L).

After cleanup, a DNA panel including 96 lines was pooled into one GBS

library and 16 cycles of PCR amplification were performed. Size

selection was done using the MinElute Gel Extraction Kit (Qiagen,

Germany). DNA concentrations of the libraries were measured using

quantitative PCR (Bio-Rad, California). Cluster generation was

performed on a cBot (program: SR_Amp_Lin_Block_Hyb_v8.0, Illumina)

using a flow cell v3 and reagents from TruSeq SR Cluster Kit v3

(Illumina) according to the manufacturer’s instructions. DNA sequencing

was performed on a HiSeq2000, equipped with on-instrument HCS

version 1.4.8 and Real-Time Analysis version 1.12.4.2 (Illumina).

Sequencing was performed in paired-end mode with a 100-bp read

length.

SNP Allele Calling

GBS

The Java program TASSEL was used to call the variants (v3.0; Glaubitz

et al., 2014). More than 1.25 billion reads were obtained from 522 lines

(Supplemental Table 5) with an average 2.74M reads per line covering

9% of the genome coverage. Sequenced reads from each line were

then pooled together to define a tag (at least 5 reads), and 15 499 006

tags were obtained. BWA (Li and Durbin, 2009) was used to map the

tags to the B73 reference genome (AGPv2, FGS 5b; Schnable et al.,

2009). 57.3% (or 8 881 958) of tags were mapped to the reference

genome and 69.3% (or 6 152 365) of these were uniquely mapped and

were used for SNP calling with default parameters (Glaubitz et al.,

2014). Index sequences were used to distinguish different individuals. In

total, 670 412 SNPs were acquired with an average missing rate of

69.2%. The outlier lines were excluded from further analysis based on

the following standards: (1) compared with the maize SNP 50K data, the

consistency was less than 90%; or (2) fewer than 10K SNPs were

obtained for a given line. Finally, 469 lines remained (Figure 1A).

600K

A total of 192 inbred lines were genotyped and 185 samples passed all QC

metrics, including low call rates, and low-quality and possibly contami-

nated samples. Genotypes were produced by the AxiomGTv1 algorithm

(Nicolazzi et al., 2014) with inbred penalty and generic prior-model

clustering, and the average reproducibility among eight sets of hidden

replicates was 99.8%. SNPolisher (Nicolazzi et al., 2014) was then used

to classify the QC SNP genotype into six different types, and the type of

polymorphic high resolution (PHR) and PHR reidentified from an

optional off-target variant calling algorithm were both retained and

merged for the next analysis, to obtain a total of 503 030 SNPs. A filtration

similar to that used with GBS was applied, and 153 lines were used for

further analysis (Figure 1A).
Creation of the Integrated Map

After strict quality controls for each dataset, the genotypes from four

different genotyping platforms were merged, and in cases where the

different platforms disagreed about specific loci, priority was given in

this order: 600K > 50K > RNA-seq > GBS. Beagle (v4.0; Browning and

Browning, 2007) was then used to perform genotype imputation.

Markers from chromosome 10 were used to select the best parameters

for Beagle and to evaluate the accuracy of imputation, and 15 000

(�3% of total within chromosome 10) randomly selected known

genotypes (loci 3 individual) were masked as missing. The reliability of

imputation was evaluated by comparing the known and imputed

genotypes. Various parameters were tested, and the best parameter for

this study was determined to be: window = 50 000, overlap = 5000,

ibd = true. With these parameters, the average accuracy of imputation

was 96.93% when SNPs with a high missing rate (>90%) were excluded

before imputation (removing-then-imputation strategy). An alternative

strategy, imputation-then-removing, in which those SNPs with a high

missing rate (>90%) are excluded after imputation, resulted in a lower

accuracy rate of 95.89%. Thus the former strategy was used for final

imputation analysis. Finally, the integrated map, with more than 2.65M

loci, was obtained for 540 individuals, 1.25M of which had a MAF R5%

and were used for further studies. The finally merged genotyping set

(with hapmap format) is available at www.maizego.org/Resources.

SNP Validation and Annotation

To evaluate the reliability of the newly integrated map, we collected

the variants identified from resequenced PCR products by different

laboratories working on this same population. In all, 477 independently

genotyped loci within the subset of this panel were evaluated, and the

consistency reached 94.53% (Supplemental Table 1). Most of the

inconsistencies were located within complex regions such as tandem

repeats (Supplemental Figure 4). The MAF of 307 among 477 loci was

greater than 5%. The effect of each variant was annotated by the

SnpEff program (Cingolani et al., 2012) to classify genotypes based

on different genomic regions and different effect consequences. The

Chi-square goodness-of-fit test of the ratio of different types of SNP

effects (missense, intergenic, etc.) was performed.

Association Analysis

The merged SNPs dataset (MAF >0.05) was used to perform eQTL anal-

ysis for each gene, based on the LMM (Yu et al., 2006) implemented in

the R package EMMA (Kang et al., 2008), where the population

structure, kinship matrix, and other hidden confounding factors were

fitted to control false-positive associations. All are similar to those of the

previous study as described by Fu et al. (2013), so the results are

comparable.

Identification of eQTLs and Hotspots

The cutoff used to filter associated SNPs was P = 7.97 3 10�7 (1/n,

where n represents the number of SNPs). These steps were followed to

identify eQTL regions. First, all significantly associated SNPs were group-

ed into clusters when the distance between two consecutive SNPs was

<10 kb, and the clusters with at least five significant SNPs were regarded

as candidate eQTLs, represented by their most significant SNP (named as

lead SNP). Next, those candidate eQTLs in LD (r2 R 0.1) with other more

significant candidates for the same gene were considered as false-

positive associations introduced by intrinsic LD structure and were thus

removed. The joint effect, estimated bymultiple linear regression, of asso-

ciated SNPs within each eQTLwas then compared.When the significance

of the candidate eQTLs in LD (r2 R 0.1) were equal, the eQTLs with larger

joint effects were retained. The procedure for eQTL identification is similar

to, but more rigorous than, the procedure used previously (Fu et al., 2013).

To make the conclusions more reliable, we considered three methods to

distinguish between local and distant eQTLs, from lenient to strict. First, as

in the previous study, the eQTLs identified in this study (named ‘‘new’’ in

main text and Figure 3C) were considered local if the lead SNP was
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located within 20 kb of its targets and otherwise were considered distant.

Second, eQTLs for the same traits located within 100 kb of each other

were merged, and the remaining significant eQTLs were then

considered local if the lead SNP was located within 100 kb of its

targets, while all other QTLs were defined as distant (named as

‘‘new_100K_100K’’). The most rigorous method was to merge eQTLs

within 500 kb for the same traits and those with the most significant or

largest effect were retained, and regarded as local if the lead SNP

was located within 100 kb of its targets. The remaining ones were

defined as distant (referred to as ‘‘new_500K_100K’’). Results from

‘‘new_100K_100K’’ were used if there is no special explanation in the

main text, and the full list of eQTL results are given in Supplemental

Table 6.

To identify the distant hotspots, we applied a new local-scan statistical

method (Silva et al., 2014). Different initial window sizes (5, 10, and

20 kb) were applied, the significance level of adjusted P value was set

to 0.05, and 5 kb was finally used to achieve single gene

level resolution. This method depends on the scanning window size

and requires calibration. It shrinks the initial window as appropriate to

detect and best define the hotspot size (Silva et al., 2014). Thus, the

final hotspot regions are usually smaller than the initial window,

sometimes down to a single SNP, which could be associated with

several targets.

Epistatic Interaction Analysis

We have investigated whether the significant SNPs identified in the in-

tergenic (e)QTL of chromosome 4 for oil concentration have epistatic

interaction with the three candidates. Given each inspected variant pair

(A versus B) for oil concentration Y, linear regression was used to fit the

model:

Y = b0 + b1gA + b2gB + b3gAgB

where gA and gB are allele counts. Then the b3 coefficients are tested for

significance of epistatic interaction for A versus B. A linear regression-

based test within plink (Purcell et al., 2007) was used in the

implementation. The significance was measured as those pairs with

P value %1 3 10�4, and the distance between two examined variants

less than 50 kb was excluded, of which the significant interactions

could be likely caused by LD.
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