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Abstract

Background: Starch from maize kernels has diverse applications in human and animal diets and in industry and
manufacturing. To meet the demands of these applications, starch quantity and quality need improvement, which
requires a clear understanding of the functional mechanisms involved in starch biosynthesis and accumulation. In
this study, a recombinant inbred line (RIL) population was developed from a cross between inbred lines CI7 and
K22. The RIL population, along with both parents, was grown in three environments, and then genotyped using the
MaizeSNP50 BeadChip and phenotyped to dissect the genetic architecture of starch content in maize kernels.

Results: Based on the genetic linkage map constructed using 2,386 bins as markers, six quantitative trait loci (QTLs)
for starch content in maize kernels were detected in the CI7/K22 RIL population. Each QTL accounted for 4.7 %
(qSTA9-1) to 10.6 % (qSTA4-1) of the starch variation. The QTL interval was further reduced using the bin-map
method, with the physical distance of a single bin at the QTL peak ranging from 81.7 kb to 2.2 Mb. Based on the
functional annotations and prior knowledge of the genes in the top bin, seven genes were considered as potential
candidate genes for the identified QTLs. Three of the genes encode enzymes in non-starch metabolism but may
indirectly affect starch biosynthesis, and four genes may act as regulators of starch biosynthesis.

Conclusions: A few large-effect QTLs, together with a certain number of minor-effect QTLs, mainly contribute to
the genetic architecture of kernel starch content in our maize biparental linkage population. All of the identified
QTLs, especially the large-effect QTL, qSTA4-1, with a small QTL interval, will be useful for improving the maize
kernel starch content through molecular breeding.
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Background
Maize is a leading crop worldwide because of its diverse
functions as a source for human food and animal feed
and as a raw material for industry and manufacturing.
With a growing world population and need for biofuel,
increasing maize grain yield is necessary to meet the
market demand. Starch is the major component of maize

kernels, accounting for 70 % of the kernel weight. In
addition, starch is increasingly used as a renewable
chemical feedstock for the conversion of other products,
such as high fructose corn syrup, polymer-based fibers
and fuel ethanol [1]. Therefore, the ability to manipulate
starch quality and quantity in maize kernels is an im-
portant goal in maize breeding.
Starch is deposited as water-insoluble semicrystalline

granules, which are chemically comprised of two homo-
polymers of α-D-glucose, amylose and amylopectin, in the
maize endosperm. Although starch metabolism is com-
plex, it is clear that four classes of enzymes, adenosine

* Correspondence: yxiaohong@cau.edu.cn
†Equal contributors
1National Maize Improvement Center of China, Beijing Key Laboratory of
Crop Genomics and Genetic Improvement, China Agricultural University,
100193 Beijing, China
Full list of author information is available at the end of the article

© 2015 Wang et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Wang et al. BMC Plant Biology  (2015) 15:288 
DOI 10.1186/s12870-015-0675-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s12870-015-0675-2&domain=pdf
mailto:yxiaohong@cau.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


diphosphate glucose pyrophosphorylases (AGPases),
starch synthases (SSs), starch branching enzymes
(SBEs) and debranching enzymes (DBEs), play critical
roles in starch biosynthesis. Maize mutants have been
used to isolate genes encoding key enzymes in starch
metabolism, such as Shrunken1 (sh1), Shrunken2 (sh2),
Brittle2 (bt2), agpsemzm, agpllzm, Waxy1 (wx1), SS1,
Sugary2 (su2), Dull1 (du1), SS2b-2, SS2c, SS3b-1,
SS3b-2, SS4, SBEIa, SBEIIa, Amylose extender1 (ae1)
and Sugary1 (su1) [2, 3]. The sh1 gene encodes the
major isoform of sucrose synthase and provides an
important link in sucrose-starch conversion reactions,
as sucrose synthase catalyzes the reversible reaction
between sucrose and uridine diphosphate-glucose [4].
sh2, bt2, agpsemzm and agpllzm encode the large or
small subunits of AGPase, which converts glucose-1-
phosphate to ADP-glucose, the precursor for starch
synthesis [3, 5–7]. wx1, encoding granule-bound SS I,
is solely responsible for amylose production, whereas
SS1, Su2, Du1, SS2b-2, SS2c, SS3b-1, SS3b-2 and SS4,
encoding four types of soluble SS, are responsible for
amylopectin production [8–13]. SBEIa, SBEIIa and
ae1 encode the SBE isoforms Ia, IIa and IIb, respect-
ively [14–16], which are all responsible for amylopec-
tin production. su1 encodes a DBE of the isoamylase
type, and mutant su1 kernels contain the highly
branched, water-soluble phytoglycogen and constitute
the original sweet corns [17]. These are the key steps
in maize starch metabolism, but how they are con-
nected still requires clarification. In addition, little is
known regarding the regulation of starch biosynthesis
and accumulation in maize.
QTL mapping is a classical method for identifying loci

for quantitative traits of interest without prior genetic
knowledge. A variety of QTLs for the starch content in
maize kernels have been identified in different biparental
populations since the first study in the Illinois High
Protein × Illinois Low Protein F3 population, which was
derived from a cross of two lines divergently selected
for protein content after 76 generations in the Illinois
long-term selection experiment [18–32]. Among these
studies, 33 and 127 single nucleotide polymorphisms
(SNPs) associated with starch content in maize kernels
were further identified using the single regression
method and the subsampling method in a nested asso-
ciation mapping population, respectively [28]. This in-
formation extended the limited knowledge regarding
the causative genetic factors underlying QTLs of kernel
starch content.
QTL mapping is firstly suggestive to identify loci for

complex quantitative traits, although, the resolution is
rather low, often ranging from 10 to 30 cM [33]. In-
creasing the marker density is one way to improve QTL
mapping resolution [34]. With the development of

genomics and genotyping technologies, SNP markers
have been used to increase marker density because of
their low time consumption, low cost and high through-
put. They have been widely applied to construct genetic
linkage maps and in the QTL mapping of wheat, rice,
sorghum and maize [35–38]. The growing marker dens-
ity not only increases the number of co-segregating
markers but also leads to the computational challenge
of constructing an ultra-high-density linkage map.
Therefore, constructing a “skeleton bin map”, which
combines the co-segregating markers into one bin and
separates adjacent bins based on single recombination
events, is an effective approach for capturing all of the
recombination events using saturated markers [39],
which increases the power, accuracy and resolution
needed to identify QTLs [40–46].
In this study, a maize CI7/K22 recombinant inbred

line (RIL) population was developed and genotyped
using the Illumina MaizeSNP50 BeadChip, which con-
tains 56,110 SNPs. The kernel starch contents of this
RIL and the parental lines were evaluated after being
grown in three environments. The objectives were to (1)
construct a high-density genetic linkage map using the
inferred bins as markers, (2) dissect the genetic architec-
ture of starch content in maize kernels of the CI7/K22
RIL population, (3) narrow down the position of the
identified QTLs using the SNP bin map and (4) mine
the candidate genes associated with starch content in
the refined QTL interval.

Results
Phenotypic variation in kernel starch content
The low-starch inbred line CI7 has ~0.1 %, 3.5 % and
7.1 % lower starch content values than K22 in Beijing in
2013, Hainan in 2013 and Neimeng in 2014, respectively.
Taken together, no significant difference was observed in
the starch content between the two parents, CI7 and
K22 (t = 2.13, P = 0.09). There were moderately positive
starch content correlations among the three environ-
ments, with correlation coefficients ranging from 0.57 to
0.66 (Fig. 1). The Best Linear Unbiased Prediction
(BLUP) value of the starch content revealed that the
mean of the CI7/K22 RIL population was close to the
mid-parent value (Table 1). A normal distribution was
observed for the starch content with transgressive segre-
gation in all environments (Fig. 1), indicating that the al-
leles responsible for increasing the starch content reside
in both parents. The ANOVA results indicated that
there were highly significant effects on the starch con-
tent that were due to genotype and environment
(Table 1). The broad-sense heritability (h2) estimate of
the starch content was high (82.1 %), indicating that
much of the phenotypic starch content variation in the
RIL population was genetically determined.
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Construction of bin and genetic linkage maps
The CI7/K22 RIL population, which consists of 210
RILs, and both parental lines were genotyped using
56,110 SNPs. A total of 13,433 SNPs, with their precise
physical positions based on the B73 reference sequence
Version 5b.60 (http://ensembl.gramene.org/Zea_mays/
Info/Index), were polymorphic between the two parents.
The missing rate of these SNPs ranged from 0 to
15.31 %, with an average of 1.18 %, the heterozygosity
ranged from 0 to 15.64 %, with an average of 3.69 % and
the minor allele frequency ranged from 0.27 to 0.50,
with an average of 0.45 in the CI7/K22 RIL population
(Additional file 1). For all of the RILs, the missing rate
in each line averaged 1.18, with a range of 0.09 to

28.93 %, and the heterozygosity in each line averaged
3.71, with a range of 0.04 to 19.41 % (Additional file 1).
Based on these individual SNPs, bin maps were con-
structed for all 210 RILs, and the co-segregating markers
in two contiguous block borders were lumped as a bin,
resulting in a skeleton bin map consisting of 2,386 recom-
binant bins distributed throughout the genome (Fig. 2).
The number of bins on each chromosome ranged from 148
to 392, and the physical lengths of the bins ranged from
0.34 kb to 44.2 Mb, with an average of 0.9 Mb (Additional
file 1). In total, 79.4 % of the bins were less than 1 Mb in
length, with 7.8 % of the bins being longer than 2 Mb
(Additional file 1). Using each bin as a marker, the genetic
linkage map of the CI7/K22 RIL population was con-
structed based on the recombination frequency. The total
length of the linkage map for the CI7/K22 RIL population
was 1,719.7 cM, with an average interval of 0.72 cM be-
tween adjacent bins (Additional file 1).

Identification of QTLs for starch content
Based on a linkage map of 1,719.7 cM, QTLs for starch
content were first identified using the BLUP value across
the three environments. In total, six QTLs controlling
starch content were detected in the CI7/K22 RIL popu-
lation at an empirical threshold logarithm of odds
(LOD) value of 3.1 after 1,000 permutations (Table 2;
Fig. 3). These QTLs were distributed among six genomic

Fig. 1 Frequency distribution of starch content in, and correlations across, three environments. The blue and red arrows represent the starch
content of CI7 and K22, respectively. 13BJ, 13HN and 14NM represent the environments of Beijing in 2013, Hainan in 2013 and Neimeng in
2014, respectively

Table 1 Starch content data in the parental maize lines CI7 and
K22 and the CI7/K22 RIL population

Items CI7 K22 RIL

Mean ± SD (%) 63.16 ± 1.71 66.72 ± 1.62 64.82 ± 1.64

Range (%) – – 61.36–69.52

Variance: Genotype – – 2.95**

Variance: Environment – – 0.13**

Variance: Error – – 1.93

Heritability (%)(CI)a – – 82.1(78.0–85.5)

**, significant at P < 0.01
aHeritability, broad-sense heritability (h2); CI, confidence
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regions on chromosomes 1, 4, 5, 9 and 10. The QTL
interval averaged 4.5 Mb (5.7 cM) with a range of
2.4 Mb to 8.7 Mb (2.1–13.1 cM). The starch variation in
this RIL population that could be explained by all of the
detected QTLs was 48.6 %, with each QTL ranging from
4.7 % (qSTA9-1) to 10.6 % (qSTA4-1). Alleles from K22,
the high-starch parent, at all of the mapped loci except
qSTA4-1, had increasing effects on the starch content.
The largest QTL, qSTA4-1, was located on chromosome 4
and was flanked by PZE104103541 and PZE104106157.
The CI7 allele at this locus had an additive effect of 0.54 %
for increased starch content. The second largest QTL for
starch content, qSTA10-1, located in the genomic region
between bins SYN23550 and SYN22965, explained 9.1 %
of the phenotypic variation, with an additive effect of
0.50 % on chromosome 10. The next two QTLs for starch
content, qSTA5-1 and qSTA5-2, were both located on
chromosome 5 and explained 7.7 % and 5.3 % of the
phenotypic variation, respectively.
To further confirm the six QTLs for starch content

identified using the BLUP values, we also mapped the
QTLs for starch content in CI7/K22 RILs that were

grown in different environments (Fig. 3). The association
with starch content was stable for all of the QTLs from
the RIL populations grown in all three environments.
Although the LOD values of some QTLs were lower
than the threshold, these QTLs still showed obvious
LOD peaks in the RIL when grown in different environ-
ments (Fig. 3). In addition to the original six QTLs, one
QTL on chromosome 10 was significantly associated
with starch content in Hainan in 2013 and had a clear,
but weak, LOD peak using the BLUP value (Fig. 3).
In addition to individual QTLs for starch content in

maize kernels, the additive × additive epistatic interactions
for the identified QTLs in the CI7/K22 RIL population
were also investigated. No epistatic interactions were ob-
served (data not shown), indicating that the genetic com-
ponent of starch content in the CI7/K22 RIL population is
mainly characterized by additive gene actions.

Identification of candidate genes for starch QTLs
Combined with the bin map, the intervals containing the
six identified QTLs for starch content were narrowed to
single bins for each QTL peak (Fig. 4; Additional file 1).

Fig. 2 Recombination bin map of 210 RILs. a Genetic constituents of 210 lines in the K22/CI7 RIL population. Chromosomes are separated by
vertical lines. Red, green and blue represent the K22, CI7 and heterozygous genotype, respectively. b An enlarged bin map showing part of
chromosome 10, ranging from 10.6 Mb to 13.0 Mb, in 20 RILs. The white vertical lines represent recombination intervals (RIs), which are defined
as the transition regions between two haplotype blocks in at least one of the 210 RILs. The chromosome fragment between two adjacent RIs was
defined as a bin, which was used as a molecular marker

Table 2 Individual starch content QTLs in the CI7/K22 RIL population

QTL Chr Marker interval Genetic interval (cM) Physical interval (Mb)a LOD Additive effectb R2 (%)c

qSTA1-1 1 PZE101049395–PZE101053646 76.6–80.6 34.0–37.7 4.07 −0.42 6.2

qSTA4-1 4 PZE104103541–PZE104106157 104.8–109.2 179.8–182.3 6.75 0.54 10.6

qSTA5-1 5 PZE105100606–PZE105105086 87.9–90.0 150.8–159.5 4.87 −0.47 7.7

qSTA5-2 5 SYN9183–SYN32947 164.5–177.6 213.1–215.5 3.40 −0.38 5.3

qSTA9-1 9 PZE109078278–PZE109082140 72.8–76.4 126.2–130.8 3.26 −0.36 4.7

qSTA10-1 10 SYN23550–SYN22965 66.7–73.7 127.6–132.5 5.46 −0.50 9.1
aThe physical positions of the identified QTLs are based on the B73 reference sequence Version 5.60 (www.maizesequence.org)
bA positive value indicates that the allele from CI7 increased the starch content, and a negative value indicates that the allele from K22 increased the
starch content
cPercentage of phenotypic variation explained by the additive effect of the identified QTL

Wang et al. BMC Plant Biology  (2015) 15:288 Page 4 of 12

http://www.maizesequence.org


The physical distances of the top bins ranged from 81.7 kb
(qSTA1-1) to 2.2 Mb (qSTA5-1), with each bin encompass-
ing 2 (qSTA1-1) to 45 (qSTA10-1) genes, based on the
annotated genes in the B73 reference genome Version
5b.60 (http://ensembl.gramene.org/Zea_mays/Info/Index).
The functional annotations of all 144 genes indicated that
seven genes, ZmGAL (GRMZM2G127123), ZmTPS (GRM
ZM2G151044), ZmKCS (GRMZM2G569948), ZmWRKY78
(GRMZM2G073272), ZmSnRK1I (GRMZM2G119769),
ZmSnRK1 (GRMZM2G157743) and ZmMYB132 (AC20
6901.3_FG005), were most likely to be the candidate
genes for the six QTLs (Fig. 4).

Discussion
The genetic component of starch content in maize
kernels
In the CI7/K22 RIL population, QTL mapping revealed
that the variation in the starch content of maize kernels
is controlled by at least six QTLs detected by the BLUP
value, each accounting for 4.7–10.6 % of the phenotypic
variation. All the six QTLs were stable across environ-
ments, consistent with high heritability of starch content
in this population. However, two QTLs were additionally
detected in individual environment (Fig. 3), which can

be explained by the interaction between QTLs and envi-
ronments. We then compared these six stable QTLs
with previously identified QTLs based on the available
physical locations of the markers and found that 50 % of
the QTLs identified in the current study were also de-
tected in previous studies [24, 27–30] (Fig. 5). The QTL
qSTA5-1, which had the third largest effect, was located
in a QTL hot spot, which was reported in multiple stud-
ies [27–30]. Interestingly, the top two large-effect QTLs,
qSTA4-1 and qSTA10-1, were newly identified in this
study. Taking all of the QTL studies together, over 50
loci have been detected for starch content, with one to
five QTLs in common genomic regions (Fig. 5), although
some loci lacked physical positions for their flanking
markers [18–24, 29]. In each population, the number of
QTLs for starch content ranged from 3 [31] to 42 [22],
and some of the identified QTLs had large effects, with
explained starch variations of >10 % [20, 24, 27, 29, 30, 32].
This suggests that a few large-effect QTLs, together
with a large number of minor-effect QTLs, mainly con-
tribute to the genetic component of starch content in
maize kernels in most biparental linkage populations,
which reflects the complexity of starch biosynthesis and
accumulation in maize kernels.

Fig. 3 The distribution of starch content QTLs across the entire genome in different environments. a The LOD profiles of starch content QTLs.
b The additive effects of starch content QTLs. 13BJ, 13HN and 14NM represent the environments of Beijing in 2013, Hainan in 2013 and Neimeng
in 2014, respectively. BLUP represents the results of QTL mapping using the BLUP value of starch content based on three environments
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Epistasis, the interaction between alleles from two or
more genetic loci, is generally considered as a biologically
plausible feature of the genetic component of quantitative
traits, as the quantitative variation in phenotypes partly re-
sults from multifactorial genetic perturbations, such as de-
velopmental, transcriptional and metabolic networks [47].
In maize, epistasis gives rise to variation in evolutionary,
agronomic and quality traits [24, 45, 48–53]. Previous
kernel starch QTL studies in biparental populations also
reported that epistasis contributes in part to starch vari-
ation in maize kernels [27, 29, 32]. However, epistasis was
not responsible for kernel starch variation in the current
study, which is consistent with other studies, including a
study of a nested association mapping population consist-
ing of 25 RIL populations [28]. This phenomenon might
be caused by the small effect of epistasis on starch

content, genetic design and/or the power of statistical and
computational methods [47]. For qSTA9-1 and qSTA5-2,
no epistatic interactions were found based on their candi-
date gene identifications as ZmSnRK1 and ZmSnRK1I,
respectively.

Association of candidate genes with kernel starch QTLs
Starch metabolism and starch granule size, number and
morphology are key factors that influence the starch
content in maize kernels. A limited number of genes in-
volved in starch metabolism have major effects on starch
quantity and/or quality based on the analysis of well-
known maize mutants [2, 3]. The natural association of
starch quantity and quality has also been investigated for
four genes involved in starch metabolism. bt2 is signifi-
cantly associated with starch quantity, ae2 is responsible

Fig. 4 LOD values for QTL bins and representations of genes spanning the peak bin. The blue lines represent the LOD profiles of the bins within
a QTL interval. The genes predicted to have putative functions associated with starch content are indicated by red bands; other genes in each
peak bin are indicated by gray bands. a-f shows the results of qSTA1-1, qSTA4-1, qSTA5-1, qSTA5-2, qSTA9-1 and qSTA10-1,respectively.
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for starch quality and sh1 and sh2 affect both starch
quantity and quality [54]. To further address the natural
variation that can be attributed to the known genes in
starch metabolism and the possible molecular mecha-
nisms underlying the detected starch QTLs, we com-
pared their physical positions based on the B73
reference genome Version 5b.60 (Fig. 5). Thirteen of
18 genes co-localized with previously identified QTLs,
suggesting that these genes might control the co-
localized starch QTLs. Unexpectedly, no known genes
co-localized with the six QTLs in the current study,
indicating that novel molecular mechanisms might
underlie these QTLs.
The QTL mapping resolution often depends on the re-

combination frequency of a population, which is mainly
determined by population size and marker density [34].
In a given population, increasing the marker density can
reveal the necessary recombination events, increasing
the resolution of the genetic map and enhancing the
resolution and precision of QTL mapping. An example
is QTL mapping using the high-density SNP bin map
[42, 55]. The quality and accuracy of the bin map for

QTL detection has been validated by studies on multiple
traits in rice and maize [35, 40–46, 56]. Thus, we re-
duced the size of the QTL interval from the original
4.5 to 0.9 Mb in average using the SNP bin map
(Additional file 1). The single bins at each QTL peak
were considered the fine intervals, as bins with estab-
lished positions under the QTL peaks exhibited more
associations than did those outside of each peak. Fur-
thermore, the accuracy of the associated bins was
confirmed by the stability of the QTL peak positions
across RILs grown in multiple environments (Fig. 3).
The relatively small distance thus allowed us to iden-
tify candidate genes for the observed starch content
QTLs based on the hypothesis that all of the genes
are present in the B73 reference genome. There were
144 genes inside six bins, among which there were
seven leading candidate genes for the six starch
QTLs (Fig. 4; Additional file 1). However, their association
with kernel starch content requires more evidence from
such strategies as the further fine mapping of those identi-
fied by backcrosses or knock-out or over-expression of the
candidate genes.

Fig. 5 Co-localization of starch content QTLs in maize kernels identified in the current and previous studies. QTLs detected in previous studies are
as follows: KC, CI7/K22; BB, By804/B73 [25, 30]; DN, N04/Dan232 [32]; GY, Gy220/8984 or 8622 [27]; KW, W64Ao2/K0326YQPM [31]; IO, Illinois Low
Oil/Illinois High Oil [24]; IP, Illinois Low Protein/Illinois High Protein [18, 21]; FD, an early flint line/a late dent line linkage populations [19, 20] and
NAM, a nested association mapping population [28]. The vertical dark green lines indicate the positions of 18 well-known genes encoding key
enzymes in maize starch metabolism
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For qSTA1-1, the interval size was reduced to 87.1 kb,
which contains only one expressed gene with a func-
tional annotation, ZmGAL (Additional file 1). ZmGAL
encodes a beta-galactosidase, a member of an enzyme
group that can release glucose from lactose, a disacchar-
ide that occurs in milk [57, 58]. There are no reports of
lactose occurring in plants, meaning that this specific
enzyme most likely acts by liberating glucose from an-
other, as yet unidentified, sugar. Glucose has a funda-
mental role in starch metabolism, and thus variation in
ZmGAL expression may regulate the amount of glucose,
with consequences for starch metabolism. A similar mo-
lecular mechanism, based on the function of the leading
candidate gene, was investigated for the QTL qSTA4-1,
which has the largest effect. Of the 12 genes identified
within an ~0.5 Mb genomic region, ZmTPS was the
leading candidate gene for qSTA4-1. ZmTPS encodes
trehalose-6-phosphate (T6P) synthase in the trehalose
metabolic pathway, which shares some common inter-
mediate products, such as glucose, with starch metabol-
ism [59]. Thus, a variation in ZmTPS expression will
influence starch metabolism. In addition, T6P, a reactant
in the reverse reaction catalyzed by T6P synthase, is a
sugar signal that is indispensable for carbohydrate
utilization and starch pathway regulation in Arabidopsis
[60, 61]. Leaves of transgenic plants with enhanced T6P
have elevated starch levels via a post-translational in-
crease in the redox activation of AGPase, revealing a
positive correlation between T6P level, redox AGPase
activation and starch content in Arabidopsis [61, 62].
Thus, ZmTPS was a strong candidate gene for qSTA4-1.
The bin at the QTL peak of qSTA5-1 was the largest

among those of the six identified QTLs and harbored 44
genes in the spanning genomic region (Additional file 1).
The two genes that are most likely responsible for
qSTA5-1 are ZmKCS and ZmWRKY78. ZmKCS encodes
a member of the 3-ketoacyl-CoA synthase family that
catalyzes the condensation of malonyl-CoA with long-
chain acyl-CoA, the first committed step in the fatty acid
elongation system [63]. Regulating the enzyme activity of
3-ketoacyl-CoA synthase would lead to changes in the
amounts of fatty acids with carbon chain lengths of <18,
which are the major fatty acids in maize kernel oil. Thus,
qSTA5-1 might have indirect effects on starch content
by regulating the oil content that results from variation
in ZmKCS. In addition, we also considered ZmWRKY78,
which encodes a member of the WRKY transcription
factor family, as a candidate gene for qSTA5-1, as
transcription factors are key regulators of complex
molecular pathways, including the metabolic pathway
of kernel composition biosynthesis. The over-expression
of ZmWRI1, a transcription factor of the APETALA2/
ethylene-responsive element-binding protein family, re-
sulted in increased oil content by regulating most steps of

oil biosynthesis in maize kernels [64, 65]. Similarly, an-
other transcription factor of the MYB family, ZmMYB132,
was considered as another leading candidate gene for the
second largest QTL, qSTA5-1.
In addition to the two transcription factors, two other

regulators, a kinase gene, ZmSnRK1, and its related
interactor, ZmSnRK1I, were predicted to be responsible
for qSTA9-1 and qSTA5-2, respectively. These predic-
tions were based on the hypothesis that the kinase is es-
sential for signal transduction and regulation and might
regulate the metabolic pathway of kernel composition
biosynthesis. The size of the qSTA9-1 interval was re-
duced from 4.6 Mb to 0.9 Mb and contains 28 genes
(Additional file 1). Among these genes, only ZmSnRK1
seems to be associated with starch content based on the
current knowledge. ZmSnRK1 encodes a serine/threo-
nine protein kinase that plays a key role in the global
control of plant carbon metabolism [66]. The over-
expression of SnRK1 in potato tubers causes a significant
increase in starch content, resulting from a dramatic in-
crease in the level of expression and activity of sucrose
synthase and ADPGase, two key enzymes involved in
the starch biosynthetic pathway [67]. For qSTA5-2, there
were 13 genes in the refined ~0.3 Mb genomic region
(Additional file 1). Among these genes, ZmSnRK1I, anno-
tated as an interactor of snf1-related kinases, is most likely
the candidate gene for qSTA5-2. This suggests that
ZmSnRK1I might indirectly regulate starch metabolism.
However, the regulatory mechanisms involved in the tran-
scription of key enzymes in metabolism by ZmSnRK1 and
its interactor in maize remain largely unknown.
In summary, among the seven leading candidate genes

for starch QTL in this study, three genes, ZmGAL, ZmTPS
and ZmKCS, encoding the key enzymes in non-starch me-
tabolism, might have an indirect effect on starch content
by regulating the oil content in maize kernels or have a
direct effect on starch content by influencing the amount
of the important intermediate product, glucose, in starch
metabolism; ZmWRKY78 and ZmMYB132, encoding
WRKY and MYB transcription factor family domains, may
regulate the expression of key enzymes in starch or the en-
tire metabolism; ZmSnRK1, encoding a serine or threo-
nine protein kinase, and its interactor ZmSnRK1I, may
serve as counterparts that affect the starch content by
regulating certain enzyme activities in starch biosynthesis.

Application of starch QTLs in maize breeding
The starch produced in maize kernels is not only an im-
portant carbohydrate source as human and animal diets
but also a raw material for industrial and manufacturing
applications. To produce starch with properties tailored
to food, fuel, fiber or other applications, marker-assisted
selection (MAS) is an alternative and efficient strategy
for improving starch quantity and quality when QTLs or
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genes have been identified. Multiple traits have been im-
proved by MAS in maize, such as head smut resistance
[68], provitamin A content [69], kernel oil content [70]
and haploid induction rate [71]. In the current study, the
top two QTLs, qSTA4-1 on chromosome 4 and qSTA10-
1 on chromosome 10, stable across environments, will
be available for the introgression of their favorable alleles
to improve the kernel starch content using MAS. Both
QTLs explained ~10 % of the starch variation and have
additive effects of ~0.5 % in the CI7/K22 RIL population.
Whereas, the favorable alleles of these two loci associated
with starch content came from different parents. There-
fore in order to enhance the starch content into one geno-
type, it is better to pyramid them in this genotype from
different genotypes. Furthermore, the improved resolution
of both QTLs, especially for qSTA4-1, will increase the re-
liability of the markers to predict phenotypes using MAS.
When the target QTL interval is large, recombination, in
some cases, occurs between the marker and gene/QTL
because of loose linkage [72–74]. The QTL interval was
narrowed to an ~0.5 Mb genomic region, increasing the
linkage between the flanking markers and genes/QTLs.

Conclusions
We identified starch-associated QTLs in a RIL population
using a high-density linkage map, refined the identified
QTLs based on the bin map and subsequently mined their
potential causal genes. The six QTLs accounted for 48.6 %
of the starch variation in the CI7/K22 RIL population,
with only one QTL explaining >10 % of the phenotypic
variation. These findings indicate that large-effect QTLs,
as well as minor-effect QTLs, contribute to the pheno-
typic variation in starch content in the CI7/K22 RIL popu-
lation. Results from this study improve our understanding
of the genetic variants that give rise to variation in kernel
starch content, as well as of the possible mechanisms that
underlie each QTL, and will provide guidance in manipu-
lating starch quantity and quality by molecular breeding
or biotechnology-assisted improvement.

Methods
Genetic materials and field experiments
A RIL population consisting of 210 lines was derived
from the cross between inbred lines CI7 and K22. CI7 is
a high carotenoid and late maturing line introduced
from America, which is developed by the USDA-ARS
and derived from a backcross of (L317 x 33–16) L317,
and K22 is a Chinese elite inbred line derived from a
cross between two Chinese inbred lines LK11 and Ye478
[75]. According to phenotypic data of kernel starch con-
tent in 474 regular inbred lines [76] in three environ-
ments (unpublished data), CI7 has low kernel starch
content (around 64 %) and K22 has high kernel starch
content (around 69 %). All F7 RILs, along with both

parents, were grown in a randomized complete block
design with one replication in Beijing in 2013, Hainan in
2014 and Neimeng in 2014. Each genotype was grown in
a single-row plot having 1 m rows with 0.67 m between
rows. In each row, all five ears were self-pollinated and
harvested after maturity. Three hundred kernels were
bulked for each row, with equal amounts from each har-
vested ear. Then, 20 representative kernels from each
plot were selected from the 300 bulked kernels to meas-
ure the starch content.

Starch content measurement
The starch content in maize kernels was determined
using a fermentable carbohydrate assay as described by
Zhou and Bao [77]. In brief, the ground powder from 20
kernels was digested with heat-stable α-amylase and glu-
coamylase. The starch was then fermented into ethanol
and carbon dioxide by yeast, and, finally, the starch con-
tent was calculated as the weight lost owing to fermenta-
tion (CO2) and heat (ethanol). All of the samples were
measured with two sub-samples analyzed in parallel, and
the average was used for subsequent analyses.

Phenotypic data analysis
All of the statistics were performed using R Version
3.1.1 (www.R-project.org). The linear mixed effect func-
tion lmer in the lme4 package of R Version 3.1.1 was fit-
ted to each RIL to obtain the BLUP value for starch
content: yi = μ + fi + ei + εi, where yi is the phenotypic
value of individual i, μ is the grand mean for all environ-
ments, fi is the genetic effect, ei is the effect of different
environments and εi is the random error. The grand
mean was fitted as a fixed effect, and genotype and en-
vironment were considered as random effects. The aov
function in R version 3.1.1 was used to estimate the vari-
ances of the starch content. The model for the variance
analysis was y = μ + αg + βe + ε, where αg was the effect of
the gth line, βe was the effect of the eth environment
and ε is the error. All of the effects were considered to
be random. These variance components were used to
calculate the broad-sense heritability as h2 = σ2g/(σ

2
g + σe

2/e)
[78], where σ2g is the genetic variance, σe

2 is the residual
error and e is the number of environments.

Genotyping, and the construction of bin and genetic
linkage maps
All 210 F6 lines in the CI7/K22 RIL population, together
with their parents, were genotyped using the Illumina Mai-
zeSNP50 BeadChip, which contains 56,110 SNPs and
covers 19,540 genes [79]. The leaf tissue was collected and
freeze-dried at −60 °C. Genomic DNA from the leaf tissue
was extracted using cell lysis and protein precipitation solu-
tion kits (Qiagen, Germany). SNP genotyping was per-
formed on the Illumina Infinium SNP genotyping platform
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at the DuPont Pioneer Company. PLINK [80] was used to
estimate the missing rate, minor allele frequency and het-
erozygosity for each SNP, and the missing rate and hetero-
zygosity for each line. After quality control, 13,433 SNPs
that were polymorphic between the two parental lines
were used to construct the genetic linkage map using an
economic go-wrong method integrating the Carthagene
software [81] in a Linux system with in-house Perl
scripts (www.maizego.org/Resources.html). Completely
co-segregating markers were assigned to a chromosomal
bin, and each bin was considered as one marker.

QTL mapping
QTL mapping of the starch content was performed
using composite interval mapping [82] implemented in
Windows QTL Cartographer 2.5 [83]. The scanning
interval between markers was set at 0.5 cM, and the
window size was set at 10 cM. Model 6 of the Zmapqtl
module was selected for detecting QTLs and estimating
their effects. A forward-backward stepwise regression
with five controlling markers controlled the background
from flanking markers. The threshold LOD values to de-
clare the putative QTLs were estimated by permutation
tests with a minimum of 1,000 replicates at a signifi-
cance level of p < 0.05 [84]. The confidence interval of
the QTL position was determined using the 1.5-LOD
support interval method [85]. To further detect the addi-
tive × additive interactions between the identified QTLs,
multiple - interval mapping in Windows QTL Cartog-
rapher 2.5 was performed using the Bayesian Informa-
tion Criteria as the criteria [86].

Annotation of candidate genes
Based on the information available in the Gramene Bio-
Mart database (ensembl.gramene.org/biomart), the genes
within the refined QTL interval and their functional de-
scriptions were extracted. The function of each gene was
further confirmed from orthologs in Arabidopsis or rice
linked in the MaizeGDB database (www.maizeGDB.org).
Additional protein prediction information was obtained
from the InterPro module in the European Bioinformat-
ics Institute database (www.ebi.ac.uk/interpro/).
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