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ABSTRACT

The temperate-tropical division of earlymaize germplasms to different agricultural environmentswas argu-

ably the greatest adaptation process associatedwith the success and near ubiquitous importance of global

maize production. Deciphering this history is challenging, but new insight has been gained from examining

558 529 single nucleotide polymorphisms, expression data of 28 769 genes, and 662 traits collected from

368 diverse temperate and tropical maize inbred lines in this study. This is a new attempt to systematically

exploit the mechanisms of the adaptation process in maize. Our results indicate that divergence between

tropical and temperate lines apparently occurred 3400–6700 years ago. Seven hundred and one genomic

selection signals and transcriptomic variants including 2700 differentially expressed individual genes

and 389 rewired co-expression network genes were identified. These candidate signals were found to be

functionally related to stress responses, andmost were associated with directionally selected traits, which

may have been an advantage under widely varying environmental conditions faced by maize as it was

migrated away from its domestication center. Our study also clearly indicates that such stress adaptation

could involve evolution of protein-coding sequences as well as transcriptome-level regulatory changes.

The latter process may be a more flexible and dynamic way for maize to adapt to environmental changes

along its short evolutionary history.
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INTRODUCTION

Maize (Zea mays ssp. mays) is essential to the global food supply,

withcurrent totalmaize grain productionhigher thananyother crop

(USDA FAS, 2013). Maize is also used as a model to investigate

crop evolution and improvement (Doebley et al., 2006). It is

thought to have been domesticated from teosinte (Zea mays ssp.

parviglumis) about 9000–10 000 years ago in southwestern

Mexico, which is a mid- to lowland tropical growing environment

(Matsuoka et al., 2002; Van Heerwaarden et al., 2011). The

remarkable conversion of a Mexican annual grass species into

the top food, feed, and industrial crop in the world resulted from

the spread of temperate maize over several thousand years from

its tropical geographic origin to the north and east across North
America and to the south across most of Latin America,

eventually creating a maize distribution from �40�S in Chile to

�45�N in Canada (Matsuoka et al., 2002). Centuries ago, maize

cultivation expanded further to East Asia, Europe, and Africa, and

the temperate–tropical division remains in all crop-growing conti-

nents today.When facedwithwidely varying temperate conditions

in temperature, day length, and disease susceptibility, maize

adapted remarkably well. One major goal of adaptation studies is

to identify specific genomic changes contributing to advantageous

phenotypic performance in varying environmental conditions.
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In order to identify the genetic factors driving maize evolution, re-

searchers have explored a number ofmethods to reveal footprints

of selection within the genome (Chia et al., 2012; Hufford et al.,

2012; Jiao et al., 2012). It is intriguing that these changes

occurred within such a short evolutionary time frame. The

importance of transcriptional regulation of rapid phenotypic

evolution has been a central tenet of recent studies (Carroll,

2008; Ecker et al., 2012; Swanson-Wagner et al., 2012; Koenig

et al., 2013). Genes with differential expression (DE) and altered

expression networks could provide evidence of the contribution

of transcriptome regulational changes to the adaptation process.

RNA-seq allows cost-effective exploration of both sequence

and transcriptional variation, particularly in large and repetitive

sequence-rich genomes (Wang et al., 2009) such as maize.

Seed development, a critical process to both plant propagation

and food supply, is a time in which DNA methylation and chro-

matin remodeling, and thus transcriptional patterns, are reshaped

for the new generation (Ahmad et al., 2010; Van Zanten et al.,

2011; Wollmann and Berger, 2012). Transcriptional variation

may thus heavily influence seed-related traits via environmentally

sensitive epigenetic control (Zhang andOgas, 2009), whichwill be

expressed as selectable variation throughout the lifetime of the

plant (de Casas et al., 2012; Kapazoglou et al., 2013). Most

maize genes are expressed in seed or embryos, many of which

are not expressed again (Cho et al., 2002; Sekhon et al., 2011).

Thus, the seed offers an important window into visualizing

differences that may account for adaptation.

To study the nature ofmaize adaptation from tropical to temperate

growing regions, a panel of 368 diversemaize inbred lines (Li et al.,

2013) (Supplemental Table 1) was characterized. We combined

RNA-seq of seeds (15 days after pollination; Fu et al., 2013) with

data from the MaizeSNP50 BeadChip, resulting in over one

million high-quality single nucleotide polymorphisms (SNPs) and

expression quantitation from 28 769 genes, analyzed together

with 662 phenotypic traits. These included morphological, agro-

nomic, physiological, and metabolic traits, many of which are

also known to be important in stress adaptation (Bohnert and

Sheveleva, 1998; Bhargava and Sawant, 2013). This study seems

to be the first systematic exploration of the mechanisms of the

maize adaptation process, with the goal of answering several

specific questions: Which phenotypic changes in temperate lines

convey an advantage in novel environments? Which genomic

regions were selected during the adaptation process? Which

phenotypes do these regions likely affect? To what extent do

regulatory changes contribute to evolution? What beneficial

value do they provide in the relatively short evolutionary time

frame suggested in this study? Although only one organ (the

seed) was sequenced, such knowledge will position us with

general understanding of the maize adaptation process and

provide resources for developing breeding strategies to help

corn producers cope with an increasingly erratic climate.
RESULTS

Population Level Differences between Temperate and
Tropical Lines

The population-scaled recombination rates (r) in temperate and

tropical lines were 1.078/kb and 2.644/kb, respectively. This is
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a reflection of different rates of linkage disequilibrium (LD) decay,

which was much faster in the tropical lines at the whole genome

level (Supplemental Figure 1). Recombination rate differences in

temperate versus tropical lines was smaller than the decrease

in r seen in a previous study by Hufford et al. (2012) in

landraces compared with teosinte (59% vs 75%). A cross-

population composite likelihood approach (Chen et al., 2010)

(XP-CLR) was used to identify extreme allele frequency

differentiation over linked regions when comparing temperate

with tropical subpopulations. We identified 701 regions

containing 1660 selected genes at the highest 10% of XP-CLR

values (Figure 1 and Supplemental Tables 2 and 3), ranging in

size from 10 kb to 2320 kb, with an average of 150.9 kb; this is

shorter than the 322 kb average region associated with

domestication (Hufford et al., 2012). The combined length of

selected regions was 105.7 Mb, covering 5.2% of the genome.

Nucleotide diversity (p) in the selected features identified by XP-

CLR in temperate versus tropical lines was 8.22 E�04 and

8.42 E�04, respectively, indicating a reduction of 2.4% in

temperate lines. This decrease is less than the reduction of nucle-

otide diversity in selected features identified during domestica-

tion (17%) by Hufford et al. (2012). FST of selected features was

0.027, which is similar to 0.02 reported between landraces and

improved lines and smaller when compared with 0.11 between

teosinte and landraces, possibly due to the shorter time for

adaptation from tropical to temperate than for domestication

(Hufford et al., 2012). However, the features seem to be

underestimated in this study, because most of our genotype

was derived only from the genic region, while the whole

genomic region in the study by Hufford et al. and intergenic

regions were considered as more diverse.

The divergence time between temperate and tropical subpopula-

tions is of interest and can be associated with the development of

agriculture and the spread of human civilization in the Americas;

however, archaeological information on this topic is incomplete

and occasionally contradictory (Piperno and Pearsall, 1998;

Staller and Thompson, 2002; Blake, 2006; Grobman et al.,

2012). We proposed three models (detailed in the Materials and

Methods section, Figure 2A–2C) to estimate the time of

divergence, resulting in the estimation of 3400–6700 years BP.

This time frame is supported by recent archaeological evidence

(Haas et al., 2013) and implies that after domestication, maize

cultivation rapidly expanded to temperate America (Figure 2D).

The molecular evidence thus suggests that improvement and

adaptation in maize may not have been sequential and discrete

processes, but overlapped.
Genome-wide Selection Analysis and Functional
Correspondence

The 701 selected regions were compared with 466 and 573 re-

gions identified in domestication and improvement previously,

respectively (Hufford et al., 2012; Supplemental Figure 2). Most

adaptation regions did not overlap with domestication and

improvement at all, indicating different genomic factors

contributing to the phenotype changes during adaptation. Gene

Ontology (GO) annotation of the top 571 candidate genes (see

the Materials and Methods section) within the 701 selected

regions reflected genes responding to stress, development,



Figure 1. Integrated Results of Genome Se-
lection (XP-CLR), Transcriptome Analysis
(DE and AEC), and QTL Mapping.
1, Ten chromosomes of maize. 2, XP-CLR value:

the top 20% are marked in red, and the bottom

80% in gray. 3, QTLmapping results for DTS (red),

DTT (green), and DTA (blue). 4, Results of DE and

AEC. Red and blue boxes indicate up- and

downregulated genes in temperate maize (TEM)

relative to tropical (TST), respectively; green

boxes indicate AEC genes. Some of the larger

boxes are genes referred to in the text.
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andmetabolic processes (Supplemental Table 4).MFT (Mother of

FT and TFL1, GRMZM2G059358) was identified as a strong

candidate gene in adaptation (Figure 1). It encodes a maize

MFT-like protein, which is involved in seed dormancy and germi-

nation, a complex adaptation process modulated through a

negative feedback loop via abscisic acid (ABA) (Xi et al., 2010).

MFT is also known to be involved in control of shoot

meristem growth and flowering time (Yoo et al., 2004).

Flowering time changes are critical in allowing maize to adapt

to different environmental conditions, such as photoperiod and

temperature. Another gene, GRMZM2G360455, an important

locus affecting the photoperiod response based on the maize

nested association mapping (NAM) population analysis (Buckler

et al., 2009), and containing the CO/CO-Like/TOC1 conserved

site (CCT), which always contributes to the circadian clock and

flowering time (Robson et al., 2001; Griffiths et al., 2003;

Cockram et al., 2012), was selected during maize adaptation

(Figure 3A). Metabolic processes influencing nutritionally

important traits such as starch content and oil concentration

could likely be targets of selection not only during

domestication and improvement but also adaptation, as

different soil and climate conditions will influence the

developmental stage of germinating maize. Some genes

associated with nutritional traits were selected during the

adaptation process in our study (Figure 1), such as su2

(GRMZM2G348551), zpu1 (pullulanase-type starch debranching

enzyme1, GRMZM2G158043), and sdp1 (GRMZM2G087612);

these have also been identified as selection targets during

domestication and improvement (Beatty et al., 1999; Zhang

et al., 2004; Eastmond, 2006).
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Selected metabolic pathways responding

to a changing environment are also

involved in the adaptation process.

Glutathione plays an important role in

cellular processes under biotic stress

(Dubreuil-Maurizi and Poinssot, 2012)

and is one such example. Accordingly,

gst35 (glutathione S-transferase 35,

GRMZM2G161891), gst41 (glutathione

S-transferase 41, GRMZM2G097989) and

gsh1 (g-glutamylcysteine synthetase1,

GRMZM2G111579), which influence

glutathione metabolism, were all within our

selected regions (Figure 1). Traits related to

plant architecture and vegetative growth

were also selected during adaptation,

and their corresponding genes were
found in our top XP-CLR hits, including rs2 (rough sheath2,

GRMZM2G403620), essential for normal leaf morphology

(Phelps-Durr et al., 2005); bk2 (brittle stalk2, GRMZM2G109326)

affecting mechanical strength of maize by altering the

composition and structure of secondary cell wall tissues (Ching

et al., 2006), and apt1 (aberrant pollen transmission1,

GRMZM2G448687), affecting the elongation of root cortex cells

and pollen tubes during temperature stress (Xu and Dooner,

2006) (Figure 1 and Supplemental Table 3).
Phenomic Changes Affecting Adaptation and Validation
of Selected Regions

Adaptation involves selection of different ecotypes suited to

different environments, leading to measurable phenotypic

differences between environments. To test this assumption,

we collected 662 traits, including agronomic, yield, seed

quality, and seed metabolic traits (Supplemental Tables 5–7;

Wen et al., 2014). The QST � FST method (Leinonen et al.,

2013), by comparing complex partitioning of variation of

quantitative traits and neutral molecular markers (see the

Materials and Methods section for details), allowed us to

distinguish whether the divergent traits are caused

by directional selection (QST > FST), genetic drift (QST z
FST), or stabilizing selection (QST < FST) (Leinonen et al.,

2013). One hundred and thirty traits displayed directional

selection patterns (QST > FST) across the populations and

simultaneously showed significant (P % 5.1E�05) differences

between the tropical and temperate subgroups (Supplemental

Table 8) and were thus regarded as selected traits, which
71–884, June 2015 ª The Author 2015. 873



Figure 2. Maize Dispersion Map and Diver-
gence Time Estimations.
(A) Divergence time (T) was estimated between

temperate (TEM) and tropical/subtropical (TST)

maize, using extant teosinte (TEO) lines as the

ancestor of maize.

(B) Divergence time (T) was estimated using a

model supposing a common ancestor to TEM,

TST, and TEO and equal selection pressure on

extant TEO lines (leading to T0 for teosinte) as on

TST and TEM.

(C) Divergence time was estimated between

(A) and (B), with the more likely assumption that

TEO lines have experienced a lower level of se-

lection pressure (and smaller T0) than the intensity

faced by TEM and TST during the adaptation

process.

(D) Maize dispersion map showing environmental

difference in annual mean temperature. Arrows

show possible dispersion routes and the numbers

beside the routes indicate the likely time (in years

before present) when the dispersion happened,

and the circle (beside a silver star) is the center of

maize domestication (Hufford et al., 2012). Even

although there are no inbred lines from South

America, the dispersion route to South America

was inferred from a previous study (Wallace

et al., 2014).
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were likely to contribute to improved phenotypic performance in

temperate conditions.

To test if genetic variation within selected regions contributed to

these phenotypic changes, a genome-wide association study

(GWAS) was performed on the 130 divergent traits with 24 595

SNPs (minor allele frequency [MAF]R 5%; only 4.4% of the total)

from the selected regions. In total, 345 selected regions (49.22%)

were associated (P < 4.06E�05) with 100 (or 76.92%) of the 130

traits, including three agronomic (days to silking [DTS], cob color,

and kernel color), one amino acid (Ala), and 96 metabolic traits

(Supplemental Table 9). The genes identified here undoubtedly

represent only a fraction of the total genes selected during

adaptation, since many target traits were not measured in this

study.

Quantitative trait locus (QTL) mapping was used to confirm the

phenotypic effect of the selected regions. Flowering time

changes allow maize to adapt to temperate environmental

conditions such as photoperiod and temperature. Three recom-

binant inbred line (RIL) populations generated by crossing

temperate lines with tropical/subtropical lines were used to

map flowering time (Supplemental Table 10). The identified

QTLs are reported in Supplemental Table 7, and many (113,

or 62%) overlapped significantly (P < 2.2E�16) with the

identified selected regions (Figure 1). For example, gene

GRMZM2G360455, encoding a CCT domain-containing protein,

was located in the QTL interval for DTS under short day

(tropical) but not under long day (temperate) conditions, and

also, a candidate response to flowering time of the maize

NAM population (Buckler et al., 2009) was identified within a

selected region (Figure 3A–3C). Further study of this gene may
874 Molecular Plant 8, 871–884, June 2015 ª The Author 2015.
provide a better understanding of maize flowering time and

adaptation.
Significance of Transcriptional Regulation to
Adaptation

Changes in gene regulation, affecting gene expression level but

not genestructure, are fundamental to theevolutionofmorpholog-

ical and developmental diversity (Carroll, 2008; Swanson-Wagner

et al., 2012). The present data sets provide an excellent resource

for investigating the contributionof transcriptome regulation to the

adaptation process. The coefficient of variation, a normalized

measure of dispersion of a probability distribution for expression

quantification, was similar between tropical and temperate

germplasm when considering gene expression of all genes

(Figure 4A), suggesting that most inbreds were probably at the

same developmental stage and that no dramatic transcriptome-

wide changes were observed between tropical and temperate

lines. This agrees with a previous study (Swanson-Wagner et al.,

2012), indicating that overall changes in expression did not

happen during domestication and post domestication. To study

specific transcriptome signal response of individual genes or

groups of genes contributing to the adaptation process, QST–FST
of differentially expressed genes were compared, including

single genes differentially expressed under different conditions

or in different samples (DE) and genes with altered expression

conservation (AEC) (Swanson-Wagner et al., 2012), representing

the rewired co-expression of a gene network.

DE

Among 28 769 expressed genes, 2700 (9.4% of the total) showed

significant DE (posterior probability >0.9999) based on a

regularized t-test method; all exceeded neutral expectation



Figure 3. Example of Validation of the Function of Genes within
Selected Genomic Regions Using QTL Mapping.
(A) Gene GRMZM2G360455 was in a selected region on chromosome 5.

(B) The region that contained GRMZM2G360455 covered a QTL for DTS.

(C)Annotation of GRMZM2G360455 disclosed aCCT domain in this gene,

which is related to flowering time.
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(Supplemental Table 11). Comparing between temperate and

tropical lines in a publicly available database with the same

quantitative measurement and DE analysis process, we found

that a major part of these DE genes were also expressed

differently in other tissues, including the shoot apex (Li et al.,

2012) (P = 1.88E�38) and seeding L3 leaf (Eichten et al., 2013)

(P = 1.44E�15; Supplemental Figure 3). This is highly suggestive

that most DE genes identified here were not caused by random

environmental and developmental variation and that many of the

candidate DE genes continued to be important to adaptive

differences later in the development of the mature plant. With

more relaxed posterior probability (>0.999), 14.4% of the total

genes showed expression differences and most were still likely to

havebeencausedbydirectional selection (Supplemental Figure4).

There were 871 up- and 1829 downregulated genes in temperate

versus tropical lines (Figure 4B and Supplemental Table 11).
These DE candidates tend to be regulated by distant eQTLs

(P = 1.74E�4; eQTL data from Fu et al., 2013), and especially

for upregulated (P = 9.67E�12) but not for downregulated

(P = 0.83) genes in temperate maize. With local (cis-) regulation,

expression differences are caused by one regulatory region

near each expressed gene, while more distant (trans-)

regulation often sees the expression of whole groups of

genes regulated by a single genetic factor, causing potential

widespread pleiotropic effects. Thus, trans-regulatory mutations

seem to be better suited to the changes of complex phenotypes,

which are governed by the coordinated expression patterns of

multiple genes and a single regulator. While some previous

studies have emphasized the key role for cis-regulatory evolution

(Wray, 2007; Stern and Orgogozo, 2009), our results suggest that

trans-regulatory variation could contribute more commonly to

adaptive phenotypic divergence.

GOanalysis (Figure4Cand4D)ofDEgenesshowedanenrichment

of upregulated genes involving molecular function, especially

in catalytic activity, oxidoreductase activity, endopeptidase

inhibitor activity, and transferase activity (Supplemental Figure 5).

Endopeptidase levels are influenced by stress in plants (Richen

et al., 2003; Antão and Malcata, 2005) and animals (Karlsson

et al., 2006), but clear mechanisms are still unknown. The GO

analyses of downregulated genes in temperate lines revealed

enrichment of genes involved in processes such as response to

stimuli, metabolism, and regulation (Supplemental Figure 5). The

same GO analyses also uncovered genes involved in cellular

components and molecular functions; one downregulated

protein serine/threonine phosphatase involved in both aspects

was particularly significant and is associated with biotic and

abiotic stress (Antão and Malcata, 2005; Supplemental Figure 5).

The MADS-box family of transcription factors is important in the

evolution of plant architecture and angiosperm inflorescence

development and is frequently identified as targeted regions of

selection during the domestication of maize (Zhao et al., 2011).

Three MADS-box genes (zmm5 [GRMZM2G148693], zmm29

[GRMZM2G152862] and zap1 [GRMZM2G171365]) were all

downregulated in temperate lines (Supplemental Figure 6).

These genes belong to the MICKc class of the MADS-box gene

family and the TM3, GLO, and SQUA subfamilies, respectively,

and are involved in growth and flower homeotic function

(Münster et al., 2002). The circadian clock is vital in flowering

time networks, which consist of three negative feedback loops.

Gene TOC1b (GRMZM2G148453) is located in the central loop

(Kolmos et al., 2008) and showed downregulation in temperate

lines in the current study (Supplemental Figure 6). While some

classical genes were also identified as DE even during

domestication and improvement processes (Supplemental

Figure 6), only 129 genes were identified both in DE and

genome selection in our analysis (Supplemental Figure 7).

DE-GWAS

To seek association between DE genes and the divergent traits,

transformed expression values of DE genes were analyzed via

DE-GWAS (see the Materials and Methods section) with the

130 traits that had been found to be significantly different be-

tween tropical and temperate lines. Two hundred and forty-five

DE genes (9.07% of the total) were associated (P < 1E�3) with

101 traits, including 75 traits overlapping with those detected

by trait-SNP GWAS (Supplemental Table 12). The 101 DE
Molecular Plant 8, 871–884, June 2015 ª The Author 2015. 875



Figure 4. Transcriptional DE Analysis.
(A) Density plots for the coefficient of variance (COV) for gene expression levels in all lines (black), temperate lines (blue), and tropical lines (red).

(B) Genes with significantly different expression were used for hierarchical clustering.

(C) Enrichment analysis of GO annotation within upregulated genes in temperate lines relative to tropical lines.

(D) Enrichment analysis of GO annotation of downregulated genes in temperate lines relative to tropical lines. Within the specific GO terms in (C) and (D),

MF represents genes of molecular function, CC represents genes with a cellular component, and BP are genes associated with biological processes.
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associated traits included 6 agronomic (cob color, DTS, days to

tasseling (DTT), days to pollen shedding, leaf number, and

kernel color), 5 amino acid (Ala, Arg, Asp, Lys, Gly) and 90

metabolic traits (Supplemental Table 12). Seven of the genes

identified as associated in the genomic sequence analysis

overlapped with genes identified in the DE-GWAS analysis.

A series of DE genes (c2, pr1, a1, bz1, whp1) were detected that

influence cob color via the flavonoid biosynthetic pathway
876 Molecular Plant 8, 871–884, June 2015 ª The Author 2015.
(Figure 5; Sharma et al., 2012). Cob color segregated only in

the temperate group and is known to be affected by chalcone

synthase (CHS) and maysin synthesis, which are thought to be

major contributors to corn worm resistance (McMullen et al.,

2009; Sharma et al., 2012). As can be seen in Figure 5, c2

(colorless2, GRMZM2G422750) is one of the main genes of the

CHS pathway and is located upstream of maysin synthesis

(Sharma et al., 2012). pr1 (purple aleurone1 or red aleurone1,

GRMZM2G025832) is located downstream of c2, encodes a



Figure 5. Cob Color Was Influenced by the
Flavonoid Biosynthetic Pathway in Maize.
(A) A simplified flavonoid biosynthetic pathway.

Genes in redwere found to be associatedwith cob

color in this study.

(B) Genes involved in the flavonoid pathway

showed significantly (P < 5.06E�06 for all six

candidates) DE between temperate and tropical

groups.

(C) Three DE genes (c2 [GRMZM2G422750], pr1

[GRMZM2G025832], a1 [GRMZM2G026930]) had

significant association with cob color.
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CYP450-dependent flavonoid 30-hydroxylase required for syn-

thesis anthocyanin, and is involved in naringenin chalcone

catabolism (Sharma et al., 2012). a1 (anthocyaninless1,

GRMZM2G026930), located downstream of c2 and pr1, is

involved in the production of anthocyanins (Sharma et al.,

2012). c2 and a1 were significantly associated with flavonoid

catabolism (Supplemental Table 12). Kernel color ranked from

light to dark (Supplemental Figure 8A) displayed different

distributions between tropical and temperate subgroups

(Supplemental Figure 8B) and was slightly negatively correlated

with cob color (Supplemental Figure 8C; P = 1.31E�05).

Kernel color was also affected by DE genes within the CHS

pathway, and different association patterns were observed

between tropical and temperate lines by DE-GWAS analysis

(Supplemental Figure 8D).

AEC

While DE can identify individual differentially expressed genes,

AEC (Swanson-Wagner et al., 2012) reflects the relationship of

genes with their co-expressed group. In total, 389 genes showed

the strongest AEC patterns (expression conservation score >2.5

SD; Supplemental Table 13). Further analysis indicated that the

average number of genes significantly co-expressed with AEC

candidates (as measured by an absolute Pearson correlation co-

efficient R0.3) in temperate lines was higher (259 genes) than in

tropical lines (147 genes; Supplemental Figure 9). This indicates

that the changes faced in temperate environments may have

enhanced interactions between genes in certain pathways.

Among the stronger relationships, the number of genes with

negative correlations (Pearson correlations coefficient %0) was

higher in temperate germplasm as well (24.4% in temperate

lines vs 3.2% in tropical lines). Few genes were co-expressed

with the same candidate AEC gene in both temperate and tropical

lines (Supplemental Figure 9), which suggests a rewiring of the

regulation networks in the temperate subgroup during

adaptation. However, the rewiring appears to have been less
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dramatic during adaptation, since fewer

AEC genes were identified for adaptation

than for domestication (Swanson-Wagner

et al., 2012). In contrast, the number of

differentially expressed individual genes

found in the adaptation analysis was higher

than for domestication (Swanson-Wagner

et al., 2012).

As sessile organisms, plants have evolved

to integrate endogenous and external infor-

mation and use signal transduction pro-
cesses to allow growth plasticity and survive and thrive in their

environments. Essential to this plant–environment interaction

are plant hormones, including auxins, ethylene, ABA, and brassi-

nosteroids, which play a key role in plant growth, development,

defenses, and stress tolerance (Wolters and Jürgens, 2009).

Plant hormones modulate gene expression by controlling either

the abundance of transcriptional factors or repressors or their

activities through post-translational modifications (Dharmasiri

et al., 2013). Hormonal crosstalk and interaction with other

plant compounds and environmental factors rely on

complicated signaling networks. These networks generally

intersect in central nodes. Six candidate genes related to plant

hormones were observed in our AEC analysis and may act

as central nodes in plant hormonal production. Three

(GRMZM2G078480, GRMZM5G860241, and GRMZM2G086773)

belong to the brassinosteroid biosynthesis pathway: one

(GRMZM5G864847) was an auxin-responsive Aux/IAA family

member and two (GRMZM2G026131, GRMZM2G390385) were

in the pathway producing ethylene biosynthesis from methionine

(Supplemental Figure 10). These candidates, along with their co-

expressed genes, showed very different networks in temperate

versus tropical germplasm (Supplemental Figure 10). This could

provide helpful clues to a deeper understanding of the complex

relationship between hormones and their contributions to maize

adaptation.

Many studies have identified the function of F-box receptors in

hormone controlling and signaling (Dharmasiri et al., 2005;

Kepinski and Leyser, 2005; Koops et al., 2011; Shen et al.,

2012). AEC analysis also identified an F-box protein

(GRMZM2G031958; Jia et al., 2013) displaying different

regulation patterns (Supplemental Figure 11), with a series of

462 and 85 highly co-expressed genes observed in temperate

and tropical lines, respectively. Beyond the remarkable differ-

ence in network size, several co-expressed enzymes, including
71–884, June 2015 ª The Author 2015. 877
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cytochrome-c reductases, NADH-ubiquinone oxidoreductases,

peroxidases, and amidase, and some genes that functioned in

ABA and indole-3-acetic acid biosynthesis and gluconeogenesis

exist only within temperate lines. These results are consistent

with the earlier studies that F-box proteins could play a regulatory

role in glucose-induced seed germination by targeting ABA syn-

thesis (Song et al., 2012). F-box proteins also play critical roles in

seeddevelopment,grainfilling,and response toabiotic stress (Jain

et al., 2007) in crop plants, and co-expressed (with our F-box

candidate) genes involved in cytokinins degradation, cellulose

biosynthesis, and flavonoid and flavonol biosynthesis pathways

were observed in the temperate subgroup but not in the

tropical. This F-box gene was also highly co-expressed with an

ethylene-responsive factor-like protein (GRMZM2G169382), an

abscisic stress protein homolog (GRMZM2G044132), a SAUR37-

auxin-responsive family member (GRMZM2G045243), another

two F-box domain-containing proteins (GRMZM2G116603

and GRMZM2G071705), and several transcriptional factors

(zmm29, GRMZM2G152862; ethylene-responsive transcription

factors, GRMZM2G474326 and GRMZM2G169382; WRKY1,

GRMZM2G018487; WRKY25, GRMZM2G148561; WOX2B,

GRMZM2G339751; andmorewith putative regulation of transcrip-

tion functions). In addition, the teosinte glume architecture 1

(tga1) protein and an Early Flowering 4 (EF4)-like protein simulta-

neously showed strong relationships with the target F-box

gene. These two proteins have been hypothesized to contribute

to maize adaptation to temperate climates in past studies

(Khanna et al., 2003; Ducrocq et al., 2008). The identification

of the genes encoding these proteins made the network

more complex, and further studies are needed. GO analysis of

all the co-expressed genes in temperate lines revealed an

abundance of genes that respond to temperature stimulus and

abiotic and other stress (Supplemental Table 14), which were

undoubtedly required during maize adaptation to temperate

environments.

DISCUSSION

The process of adaptation was as important a driving factor as

domestication in the creation of a geographically diverse crop,

allowing maize to spread into a wide range of environments

around the world. The impacts of domestication and improve-

ment on the genome and transcriptome have begun to be

studied (Hufford et al., 2012; Swanson-Wagner et al., 2012),

while adaptation has not yet been as systematically analyzed.

In this study, large sets of genomic, transcriptomic, and

phenomic data were used to analyze the mechanisms of

morphological evolution leading to adaptation. Plant response

to environmental change, especially stress, may have been

the key initial step towards adaptation to more extreme

latitudes (Figure 2D). A variety of mechanisms could have

contributed to stress response during the maize life cycle,

including changes in seed dormancy, germination, plant

architecture, flowering time, and optimal utilization of

resources (nitrogen, water, etc). In the face of new biotic

stresses, a series of resistance mechanisms can also evolve

at both the genomic and transcriptomic levels. Traits allowing

the plant to successfully respond to stress are precisely those

of interest to farmers and plant breeders who have achieved

improvement of temperate lines by the selection of such

stress tolerance (Tollenaar and Wu, 1999).
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It has been suggested that studies scanning for positive selection

may incur high false-positive rates and can be misleading

(Pavlidis et al., 2012). In this study, we use two additional and

reliable methods, GWAS and QTL mapping, to provide stronger

evidence for the selected regions and a link to the contributory

traits. We also identified transcriptomic variants contributing to

the adaptation process, including differentially expressed

individual genes and evidence for rewiring of co-expression net-

works. These candidate genes and regions were found to be

functionally related to stress response and most were associated

with the directionally selected traits. While this study focused on

seed transcriptome, the seed-expressed genes and phenotypes

provide the first steps towards a systematic study of the adapta-

tion process and inform our understanding of the extent to which

transcriptome variation influences the environmental adaptation

process.

It has recently been reported that human adaptation is driven pri-

marily by gene expression changes (Fraser, 2013). The present

study reveals that transcriptome regulation was also prevalent

in maize adaptation. Plants live in a dynamic environment, but

selection on genomic variation may be too slow to cause the

changes that allow the plant to adapt to a rapidly changing

environment (Chen, 2007). Selection on protein-coding sequence

variation is risky, as most mutations are harmful or lethal to the

organism, and even changes that are beneficial to some cells

or under some conditions may be harmful to other tissues or un-

der other conditions (Ecker et al., 2012). Sufficient protein-coding

sequence changes at the genomic level would be unlikely to

respond to environmental changes experienced in one or a few

generations; however, rapid changes in transcriptome regulation

can occur quickly and lead to a rapid phenotypic differentiation

(Chen, 2007). Transcriptome changes are resource economical

and are frequently associated with temporally and spatially

related gene expression patterns, the effects of which can be

limited to specific cells (Carroll, 2008; Ecker et al., 2012). Our

models, indicating a separation time between temperate and

tropical maize of 3400–6700 years BP, suggest that a great

number of changes took place during a few thousand years.

The differences in transcription of individual genes and

correlated suites of genes between temperate and tropical

maize can be explained by this hypothesis. Some studies

(Ptashne, 2007; Cortessis et al., 2012) have suggested that

epigenetic regulation was the main genetic driver causing

regulatory evolution and that epigenetic modification could also

lead to increased mutation rate (Rideout et al., 1990; Schuster-

Böckler and Lehner, 2012). Further study and more direct

evidence will be needed to better understand the interplay

between epigenetic and genetic processes under selection and

provide new insights, and possibly new mechanisms, for

practical plant improvement.

Although our comprehensive study of genomic, transcriptomic,

and phenomic variation sheds new light on the process of adap-

tation inmodernmaize,much is left to be uncovered. In particular,

changes due to adaptation of temperate maize are inferred in the

current study by comparing temperate maize with tropical maize

grown in northern temperate growing areas. Although similar

divergence and changes may have happened as maize migrated

to far southern temperate regions, no South American maize was

studied here, and thus, this conclusion remains to be confirmed.
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In future studies, expression data from more tissues and geno-

types need be included and studied under more environmental

conditions to allow a finer dissection of genes and mechanisms

involved in adaptation. It also should be kept in mind that all the

genotypic variation was identified by comparison with the

temperate maize reference genome (B73). If a bias was intro-

duced by this method of polymorphism identification, it was not

considered in this study. Novel assembly strategies taking into

account the variation from more lines could reduce this bias (if

present), and exploration of more variant types, such as pres-

ence/absence variation, should also be considered in future

studies of the adaptation process. Detailed studies on changes

in the transcriptome and, in particular, the role of epigenetics

could lead to a clearer understanding of adaptation, possibly

leading in turn to more innovative techniques to allow plant

breeders to apply native trait variation to maize improvement.

MATERIALS AND METHODS

Maize Inbred Lines and Collection of Genotypic, Phenotypic,
and Gene Expression Data

The 368 maize inbred lines included in this study form a global collection,

including representative temperate and tropical/subtropical inbred lines

listed in Supplemental Table 1, and additional information about the

lines can be found in a previous study (Yang et al., 2011).

The poly(A) transcriptome collected from kernels at 15 days after pollina-

tion from all 368 lines was sequenced using 90-bp paired-end Illumina

sequencing with libraries of 200-bp insert sizes, and 25.8 billion high-

quality reads were obtained after filtering out reads with low sequencing

quality. A total of 1.03 million high-quality SNPs with a missing data rate

less than 60%were used for imputation of missing genotypes. Three pairs

of biological replicates (SK, Han21, and Ye478) were used to evaluate the

reproducibility of genotyping by RNA-seq. The concordance rates were

greater than 99% between each pair of replicates (Fu et al., 2013),

indicating that the sequencing and SNP calling procedures were

reproducible. In addition, all lines were genotyped via the Illumina

MaizeSNP50 array. SNPs generated by RNA-seq also met high concor-

dance rates with the genotypes determined by the MaizeSNP50

BeadChip (Fu et al., 2013). Both RNA-seq and MaizeSNP50 data sets

were merged to obtain a total of more than 1.06 million SNPs; a final

data set of 558 529 SNPs with a MAF >5% was produced, and more

detailed information can be found in a previous study (Fu et al., 2013).

To quantify the expression of known genes with annotation in the B73

reference genome (filtered-gene set, version 2, release 5b), 28 769 genes

corresponding tomapped sequence reads inmore than 50%of the inbred

lines were compiled, and each gene averaged more than 1.5 K reads.

Read counts for each gene were calculated and scaled according to

RPKM (reads per kilobase of exon model per million mapped reads). After

RPKM normalization, all genes with a median expression level greater

than zero for each sample were included, and the overall distribution of

expression levels for each gene was normalized using a normal quantile

transformation (Fu et al., 2013). The same three pairs of biological

replicates were shown to share most compiled genes (average 95.71%)

with high concordance (average person’s r = 0.87, (Supplemental

Figure 12) in expression quantification between each pair of replicates.

More details on library construction, sequencing, SNP detection,

genotype imputation, positive control of SNP accuracy, and quantile

normalization of expression are described in Fu et al. (2013).

To obtain agronomic traits (reported in Supplemental Table 5; Yang et al.,

2014), all inbred lines were planted with randomized complete

experimental design by single replication in 2010 in four locations

(Honghe autonomous prefecture, Yunan province; Sanya, Hainan
province; Wuhan, Hubei province; Ya’an, Sichuan province) and 2011 in

three locations (Chongqing; Hebi, Henan province; Nanning, Guangxi

province). The seven different locations ranged from 18 to 35 degrees

north in latitude and from 102 to 114 degrees east in longitude. Kernel

color was measured in five additional trials over 2 years (Sanya, Hainan

province in 2011; Honghe autonomous prefecture, Yunan province in

2012; Chongqing in 2012; Wuhan, Hubei province in 2012; Hebi, Henan

province in 2012). All agronomic traits were measured and the best

linear unbiased predictor (BLUP) values from different environments and

years were used for the final analysis (Supplemental Table 2). Maize

kernels from each entry in the panel planted in Chongqing in 2011 were

collected to quantify the amino acid content (Supplemental Table 6),

and samples from the panel planted in Yunnan (2011) and Hainan (2010)

were harvested to measure metabolic traits (Wen et al., 2014). Only the

metabolites measured in at least two of the three experiments and

showing high correlation (P < 0.05) in the two experiments were retained

to calculate BLUP values for the next analysis (Supplemental Table 7).

Population Structure of 368 Inbred Lines

The STRUCTURE software package (Pritchard et al., 2000) was used to

analyze the population structure, and the EIGENSOFT analysis package

(Patterson et al., 2006; Price et al., 2006) was used to run a principal

component analysis of the panel used in the present study

(Supplemental Figure 13). Considering the computation time, an SNP

marker subset was used for inferring the population structure; the

subset of 14 685 SNPs was created by removing adjacent SNPs within

50 kbp intervals. All lines were divided into three subpopulations

corresponding to stiff stalk (SS), non-stiff stalk (NSS) and tropical and sub-

tropical (TST) clusters by STRUCTURE, using a probability of inclusion

into each cluster of greater than 0.65 (Yan et al., 2009). In the final

analysis, there were 133 temperate (103 NSS + 30 SS) lines, 149

tropical (TST) lines, and 86 mixed lines (Supplemental Figure 13 and

Supplemental Table 1). The mixed were excluded from further analyses

to allow a clearer comparison between tropical and temperate features.

The population structure was similar to the analysis of the same lines

reported previously using 1536 SNPs (Yang et al., 2011).

Measuring the Genomic Changes Occurring during the Maize
Adaptation Process

To evaluate changes in themaize genome due to adaption, population ge-

netics statistics, including p (Tajima, 1983) and FST (Nei, 1977), were

calculated within the differently adapted maize groups. FST was

estimated as follows:

FST =
ðHT � HSÞ

HT

HS =1� uTEM 3
�
freqA2

TEM + freqB2
TEM

�� uTST 3
�
freqA2

TST + freqB2
TST

�

HT = 1� ðuTEM 3 freqATEM + uTST 3 freqATSTÞ2 � ðuTEM 3 freqBTEM

+ uTST 3 freqBTSTÞ2

where HS refers to heterozygosity within subpopulations, and HT refers

to heterozygosity in the overall population. The variableu refers to propor-

tion of subpopulation based on size, and freqA/freqB is the frequency of

allele A or allele B in each subpopulation. The Synbreed package

(Wimmer et al., 2012) of the R-project statistical package (http://www.

R-project.org) was used to compute the LD coefficient, r2. The ggplot2

package of R (Wickham, 2009) was used to plot LD decay, as well as all

visualizations in this study (except as noted, below).

To identify regions of the maize genome that have undergone selection

during the process of adaption from tropical to temperate climates, XP-

CLR (Chen et al., 2010) was used. The following parameters were

applied to implement the XP-CLR test: the size of the window was

0.005 Morgan; the maximum number of controlled SNPs within a window
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was 100; the spacing between two grid points was 1 kb; and a corrLevel

value of 0.7 was used as a down-weighted criterion in the weighted com-

posite likelihood ratio test. Adjacent 10-kb windows from the top 20% of

the XP-CLR results were merged into larger regions, according to Hufford

et al. (2012), and only one window lower than 20% was retained for each

region. Regions in the highest 10% of the mean region-wise XP-CLR

values were regarded as having undergone selection. Gene sequences

closest to the maximum XP-CLR value were designated as the most likely

candidate genes for selection, while others within each selected region

were considered as possible selected genes. The linkage map used in

the XP-CLR analysis was constructed using an RIL population generated

from the cross of B733BY804 with 197 individuals described previously

(Chander et al., 2008), and the maize SNP50 chip (Ganal et al., 2011)

was used to re-genotype the RIL population with 15 285 polymorphic

SNPs. The distance between unmapped SNPs was estimated based on

the constructed linkage map and B73 reference genome.

Estimating the Relative Divergence Time between Temperate
and Tropical Lines

Assuming a time scale of teosinte/maize divergence of about 10 000

years, an FST-based approach (Schlebusch et al., 2012) was used to

estimate a relative divergence time between temperate and tropical

subpopulations, under the assumptions of no genetic drift, no change in

effective population size, and equal generation times in each lineage.

Although violations of these assumptions are probable and may reduce

the accuracy of the estimated divergence times, the estimated

divergence times will still be useful for the purposes of this study and in

the general study of maize evolution. We combined our SNP data with

the maize HapMapII (Chia et al., 2012) data and retained all the SNPs

from teosinte (Chia et al., 2012) and maize with the same loci,

consistent alleles, and missing ratio of alleles less than 20% to calculate

FST between temperate maize (TEM) and teosinte (TEO, 0.0668), and

between TEM and tropical/subtropical maize (TST, 0.0453). Divergence

time (T, measured in units of 2Ne generations, where Ne is the effective

number of diploid individuals) was calculated using FST according to the

following formula (Schlebusch et al., 2012):

T = � logð1� FSTÞ
Most of the SNP genotypes were located within expressed sequences,

but the results should not be affected by this, assuming similar biases be-

tween the two comparisons and sufficient numbers of markers to smooth

out unequal biases due to potential unequal selection pressures on some

loci. Different models were proposed to improve estimation of the relative

divergence time. Assuming that the teosinte lines fromwhichwe extracted

SNPs were indeed the primitive ancestors (or contained the same

sequence diversity within them as the actual ancestors), then TTEM�TEO =

10 000 years; (Figure 2A) and we can calculate the divergence time

between TEM and TST using the following formula:

TTEM�TST

TTEM�TEO

= � logð1� FstTEM�TSTÞ
�logð1� FstTEM�TEOÞ

This resulted in a divergence time of TTEM�TST = 6700 years BP. Assuming

further that the teosinte lines have undergone a similar selection pressure

(Figure 2B), the analogical formula can be used to calculate TTEM�TST

divergence time as 3400 years BP. However, because it is more likely

that the teosinte lines have experienced a selection level that is not as

strong as that of the adaptation process (Figure 2C), the true divergence

time of adaptation would fall between the two estimated times.

Bioclimatic variables data from WORLDCLIM database (Hijmans et al.,

2005) and the DIVA-GIS (Hijmans et al., 2012) software were used to

map the stress (annual mean temperature) faced by maize during the

adaptation process (Figure 2D).

Analysis of Directional Selection of Phenomic Divergence

QST � FST comparison provides us with a method to distinguish popula-

tion differentiation of complex polygenic traits as having been caused
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by natural selection or by genetic drift (Leinonen et al., 2013). QST was

estimated for all phenomic traits, including expression traits, as follows:

QST =
s2
GB�

s2
GB + 2s2

GW

�

where s2GB refers to the genetic component of variance among subpopu-

lations, and s2GW is the average component of variance within each

subpopulation.

To accurately estimate the distribution of mean FST among tropical and

temperate subpopulations, 10 000 SNPs were chosen randomly from the

entire SNP data set and the calculation was repeated 1000 times

(Supplemental Figure 14). By applying a strict outlier definition, we used a

99% confidence interval (0.025–0.0273) for the FST distribution, ensuring

a more correct comparison of QST � FST. A QST > FST value was regarded

as proof of trait divergence outstripping the expectation of a neutral state

and thus of a strong directional selection signal (Leinonen et al., 2013).

DE Analysis

Cyber-T (Baldi and Long, 2001), a regularized t-test method that also

contains statistical inferences on experiment-wide false-positive and

false-negative levels based on the modeling of P value distributions, was

used on normalized expression data (Fu et al., 2013) for the identification

of statistically significant differentially expressed genes. Posterior

probabilityofDER0.9999wasdetermined to identifyDEgenes inour study.

Characterization of Genes Displaying AEC

To identify which genes show AEC, a statistic that reflects the co-

expression of genes in a gene network (Swanson-Wagner et al., 2012),

the expression data were divided into two matrices (ETST and ETEM)

based on adaptation (tropical and temperate), and a co-expression

network was created for eachmatrix ðRTST
ij and RTEM

ij Þ. The hmisc package

in R (Harrell, 2012) was used to calculate the Pearson correlation

coefficient between each pair of gene expression values within each

subset (TEM or TST). Hmisc is an efficient algorithm for calculations in

very large data sets, and is calculated as:

RTST
ij =PCC

�
ETST
i ;ETST

j

�

RTEM
ij =PCC

�
ETEM
i ;ETEM

j

�

for i,j = 1,.,28 769. Thus, RTST
ij and RTEM

ij are square matrices with the

same dimensions (28 769 3 28 769). Each value in the two matrices rep-

resents an edge weight in the co-expression network and is the measured

similarity between expression profiles of paired genes. Although the two

matrices have identical dimensions, the distribution of values in each ma-

trix may differ because of unequal sample sizes. Thus, to compare the two

co-expression networks more accurately, the distributions were normal-

ized by subtracting the mean and dividing by the SD to obtain a standard

normal distribution. An expression conservation (EC) score was calcu-

lated as the Pearson correlation coefficient (PCC) between gene profiles

in the two co-expression networks as described by Swanson-Wagner

et al. (2012):

EC=PCC
�
ETEM
i ;ETST

i

�

where ETEM
i and ETST

i were represented by the ith rows in the temperate

and tropical co-expression matrices, respectively. AEC genes were

selected using a z score (Swanson-Wagner et al., 2012) to calculate

each EC value as follows:

z=
EC� m

s

where m and swere the mean and SD of all the EC scores of the gene. The

z score cutoff of AEC values of genes was set at %�2.5. The software
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Circos (Krzywinski et al., 2009) was used for visualizing the results in a

circular layout.

Candidate Gene Annotation and GO Enrichment Analysis

To more fully explore the functions of candidate genes, the annotation re-

sources of maizeGDB (Lawrence et al., 2008) and the InterPro (Zdobnov

and Apweiler, 2001) database were integrated into the analyses. GO

enrichment analysis was maintained by AgriGO (Du et al., 2010) with the

Fisher statistical test method (P % 0.05) and Yekutieli multitest

adjustment method (False Discovery Rate % 0.05). The GOSlimViewer

of AgBase (McCarthy et al., 2006) was used to implement GO slim

analysis, and the updated GO items of the maize genome were

downloaded from Ensembl BioMart (Kinsella et al., 2011) on April 4, 2013.

Association and QTL Mapping Analysis

SNPs within regions that have experienced selection according to the

XP-CLR approach (24 595 in total) were used in an association analysis

with the 111 different traits using the software package GAPIT (Lipka

et al., 2012) and a compressed mixed linear model. The cutoff for

significance for associations was set at 1/n (n is the number of SNPs

used, P < 4.06E�05). To better compare trait-SNP GWAS results with

the genes identified following DE analysis, the DE identified genes were

transformed prior to analysis into a discontinuous pseudogenotype with

two alleles, one if expression of the gene for a given line was higher

than the median of all lines, and the other if it was lower. Three RIL popu-

lations were used tomapQTL: BY population: BK (an inbred selected from

a tropical landrace with very big kernel size)3 Yu87-1 (an elite inbred with

tropical background used frequently in Chinese breeding programs), SZ

population: SK (an inbred selected from a tropical landrace with very small

kernel size) 3 Zheng58 (an elite inbred used frequently in Chinese

breeding programs), and YZ population: Yu87-1 (an elite inbred with trop-

ical background used frequently in Chinese breeding programs)3 Zong3

(an elite inbred used frequently in Chinese breeding programs). The QTLs

were mapped for three flowering times traits: DTT, measured as the num-

ber of days from planting to 50% male flower appearance; DTS or the

number of days from planting to 50% female flower appearance; and

days to anthesis (DTA), the number of days from planting to 50% male

flower pollen shed. Mapping was done using WinQTLcart (Wang et al.,

2011) and a limit of detection threshold value for significance was set to

2.5. The flowering time traits are an indication of adaptation and thus

used as a proxy for that trait.

Comparison with DE Gene Sets from Other Tissues

Li et al. (2012) conducted RNA-seq on the shoot apex from 2-week-old

seedlings of the NAM founders. We downloaded the raw data and quan-

tified with the same procedure used in the present study (Fu et al., 2013),

and average expression level of the two runs of each line was used. The

third leaf (L3) after germination of the NAM founders was also RNA-

sequenced by the Springer laboratory, and the RPKM results were ob-

tained by the author (Eichten et al., 2013). These two studies provided

different tissues and different genetic backgrounds compared with the

current study; these were used to test if genes identified with DE in the

current study are tissue specific or if, as assumed in the current study,

will prove to have lasting effects during maize development and

maturity. Furthermore, consistency of expression differences in

different populations can be validated. Genes with zero mapped reads

in more than 60% of the inbred lines were excluded, and the overall

distribution of expression levels for each remaining gene was

normalized using the normal quantile transformation (Fu et al., 2013).

Lines with unmixed temperate (NSS + SS) and tropical backgrounds

were used to call DE genes (P < 0.05) with the same method (Fu et al.,

2013). To test if the number of overlapping DE genes (Supplemental

Figure 3) is significant between the current study and the two published

experiments, random subsamples of genes were chosen from each

comparison pair (using the same number for each subset as the

number of DE genes identified by each study); this simulation was
repeated 10 000 times to create a distribution of random overlap DE

comparisons (Supplemental Figure 3). This distribution was used to test

if the observed number of DE overlaps is in accordance with the

simulated normal distribution.
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