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Abstract The organization of maize (Zea mays L.)

germplasm into genetically divergent heterotic groups

is the foundation of a successful hybrid maize

breeding program. In this study, 94 CIMMYT maize

lines (CMLs) and 54 United States germplasm

enhancement of maize (GEM) lines were assembled

and characterized using 1,266 single nucleotide poly-

morphisms (SNPs) with high quality. Based on

principal component analysis (PCA), the GEM lines

and CMLs were clearly separated. In the GEM lines,

there were two groups classified by PCA correspond-

ing to the heterotic groups ‘‘stiff stalk’’ and ‘‘non-stiff

stalk’’. CMLs did not form obvious subgroups by

PCA. The allelic frequency of each SNP differed in

GEM lines and CMLs. In total, 3.6% alleles (46/1,266)

of CMLs are absent in GEM lines and 4.4% alleles

(56/1,266) of GEM lines are absent in CMLs. The

performance of F1 plants (n = 654) produced by

crossing between different groups based on pedigree

information was evaluated at the breeding nurseries of

two CIMMYT stations. Genomic estimated pheno-

typic values of plant height and days to anthesis for a

testing set of 45 F1 crosses were predicted based on the

training data of 600 F1 crosses using a best linear

unbiased prediction method. The prediction accuracy

benefitted from the adoption of the markers associated

with quantitative trait loci for both traits; however, it

does not necessarily increase with an increase in

marker density. It is suggested that genomic selection

combined with association analysis could improve

prediction efficiency and reduce cost. For hybrid

maize breeding in the tropics, incorporating GEM

lines which have unique alleles and clear heterotic
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patterns into tropically adapted lines could be bene-

ficial for enhancing heterosis in grain yields.

Keywords Heterotic groups � Association analysis �
Genomic selection � SNP

Abbreviations

AF Agua Fria

ANOVA Analysis of variance

BLUP Best linear unbiased prediction

CIMMYT International Maize and Wheat

Improvement Center

CML CIMMYT maize line

crtRB1 b-Carotene hydroxylase

DA Days to anthesis

GCA General combining ability

GEM Germplasm enhancement of maize

GWAS Genome-wide association study

ISU Iowa State University

LAMP Latin American Maize Project

MAF Minor allele frequency

MAS Marker-assisted selection

NCU North Carolina University

NSS Non-stiff stalk

OPA Oligo pool assay

PCA Principal component analysis

SS Stiff stalk

TL Tlaltizapán

Introduction

Maize (Zea mays L.) is one of the most important

staple food crops across the world as well as being a

main feed and energy crop for global livestock

production and the emerging biofuel industry.

The International Maize and Wheat Improvement

Center (CIMMYT) has developed and released CI-

MMYT maize lines (CMLs) since 1984. The CMLs

were initially developed from 35 broad-based popula-

tions and pools with mixed germplasm origins. They are

carefully selected with good general combining ability

(GCA) and a significant number of value-adding traits

such as drought tolerance, nitrogen use efficiency, acid

soil tolerance, and resistance to disease and insect pests

(http://www.cimmyt.org/ru/component/content/article/

459-international-maize-improvement-network-imin/

434-cimmyt-maize-inbred-lines-cml). In many instan-

ces they are used as parental lines for the hybrids in one

or more maize mega-environments. To date, the total

number of CMLs held in trust in the CIMMYT gene-

bank is 530 (S. Taba, unpublished data) and more lines

will be included from the CIMMYT maize breeding

program. The development of elite maize lines and

populations as global public goods will continue at

CIMMYT, using new genetic variations of maize

genetic resources.

The germplasm enhancement of maize (GEM)

project is developing enhanced lines through the

introduction and incorporation of novel and useful

germplasm gathered from around the globe (http://

www.public.iastate.edu/~usda-gem/). It has used

some of the elite germplasm of the Latin American

Maize Project (LAMP) identified as a source of new

genetic diversity for widening the genetic base of

United States maize hybrids. The LAMP project

involved the cooperative efforts of 12 countries

(Argentina, Bolivia, Brazil, Colombia, Chile, Guate-

mala, Mexico, Paraguay, Peru, United States, Uru-

guay, and Venezuela) and evaluated 12,000 accessions

(Salhuana et al. 1991). The GEM project has devel-

oped breeding crosses between selected germplasm

accessions from the LAMP and other exotic germ-

plasm sources, such as proprietary lines of United

States hybrid companies who are members of the

GEM project. GEM breeding crosses are grouped into

‘‘stiff stalk’’ (SS) and ‘‘non-stiff stalk’’ (NSS) heterotic

patterns (Salhuana and Sevilla 1995; Salhuana et al.

1998). Enhanced breeding lines used in this study by

GEM contained 50 or 75% temperate elite germplasm

and 25 or 50% exotic tropical germplasm in the

respective heterotic patterns of SS and NSS. They

were released from the GEM project to the North

Central Plant Introduction Station, Ames, Iowa, USA.

Based on previous studies using both simple

sequence repeat (SSR) and single nucleotide poly-

morphism (SNP) data, use of tropical and subtropical

germplasm for temperate maize breeding was sug-

gested for broadening the genetic base of commercial

hybrid breeding (Liu et al. 2003; Yan et al. 2009; Ortiz

et al. 2010). On the other hand, use of temperate maize

germplasm in tropical maize breeding has been

difficult due to its lack of adaptation and lack of good

documentation (Goodman 1999). Some favorable

alleles may be unique to temperate germplasm. For

example, the most favorable allele of the gene

encoding b-carotene hydroxylase (crtRB1), associated

with b-carotene concentration and conversion in

Mol Breeding

123

http://www.cimmyt.org/ru/component/content/article/459-international-maize-improvement-network-imin/434-cimmyt-maize-inbred-lines-cml
http://www.cimmyt.org/ru/component/content/article/459-international-maize-improvement-network-imin/434-cimmyt-maize-inbred-lines-cml
http://www.cimmyt.org/ru/component/content/article/459-international-maize-improvement-network-imin/434-cimmyt-maize-inbred-lines-cml
http://www.public.iastate.edu/~usda-gem/
http://www.public.iastate.edu/~usda-gem/


maize kernels, was only detected in temperate germ-

plasm (Yan et al. 2010a). Experience of tropical maize

breeders on temperate germplasm often shows that

heterosis in grain yields is enhanced when crossing

with tropical germplasm. There should be favorably

unique alleles or genomic regions in temperate maize

germplasm that can be useful in a tropical maize

improvement. However, intolerance to some insects

and diseases in the tropics and poor grain quality and

adaptation of temperate germplasm suggest that a

long-term breeding program is required (S. Taba,

unpublished data). Successful hybrid performance

prediction can substantially increase breeding effi-

ciency, which is of great interest to breeders. Molec-

ular markers have been predicted and conceived as an

efficient tool to reshape maize breeding programs and

facilitate rapid gains from selection. In maize, several

methods have been investigated for predicting hybrid

performance using molecular markers (Maenhout

et al. 2009; Reif et al. 2003; Schrag et al. 2007,

2009). Genomic selection to predict genetic values

became possible with the development of high-

throughput genotyping platforms and the availability

of thousands of genome-wide molecular markers

(Bernardo and Yu 2007; Piepho 2009; Crossa et al.

2010; Jannink et al. 2010). High correlation between

true and genomic estimated breeding values in several

simulation studies supports selection based on molec-

ular markers alone (Heffner et al. 2009); however,

more studies using real data should complement their

utility in crop breeding. In addition, handling and

selecting the rapidly increasing number of markers

poses a challenge for genomic selection. For example,

in the case of a limited budget, genotyping all mapped

markers for a small number of individuals may be less

efficient than genotyping a restricted set of well-

chosen markers on a wider set of individuals (Mae-

nhout et al. 2010).

In this study we characterized a total of 148 GEM

lines and CMLs using 1,266 SNPs and evaluated the

agronomic performance of 654 F1s from crosses

between GEM and CML lines. The objectives of this

study were: (1) to show the potential use of GEM lines

for enhancement of CMLs in tropical maize hybrid

breeding on the basis of genetic differences between

them; (2) to construct a simple model for predicting

hybrid performance using information on phenotypic

values and molecular markers; and (3) to compare the

efficiency of hybrid performance prediction by using

random markers and selective markers with associa-

tion analysis.

Materials and methods

Plant materials and phenotyping

Publicly released GEM enhanced lines (n = 54)

obtained from the maize genebank at Iowa State

University (ISU), USA (http://www.public.iastate.

edu/*usda-gem/) and 94 CIMMYT lines released

by the CIMMYT maize program were planted in a

breeding nursery at Tlaltizapán station during the

summer planting cycle (2007B). Twenty-nine of the

54 GEM lines adapted for the southern USA were

registered in Crop Science, 2006 (Balint-Kurti et al.

2006; Carson et al. 2006). The 148 inbred lines used in

this study are listed in Electronic Supplementary

Material Table S1. Of the 54 GEM lines, 35 belonged

to the SS heterotic pattern and 19 to the NSS heterotic

pattern. Of the CMLs, 48 belonged to heterotic pattern

A (dent grain type) and 38 belonged to heterotic pat-

tern B (flint grain type) of the CIMMYT maize het-

erotic groups. There were eight CMLs considered to

be both A and B patterns (A/B) (Table S1). To obtain

F1 crosses among GEM 9 CML or CML 9 GEM,

CML A lines and GEM SS lines were inter-mated

plant to obtain as many different crosses as possible

and CML B lines were also inter-mated with GEM

NSS lines in the same manner. CML A/B lines were

used for inter-mating with both GEM SS and NSS

lines. A total of 654 F1 ears were obtained and planted

in breeding nurseries in the following planting season

(2008A) at CIMMYT stations in Agua Fria (AF,

20�2700000N; 97�3802400W, 100 m above sea level) in

the state of Puebla and Tlaltizapán (TL, 18�4004800N;

99�0704800W, 940 m above sea level) in the state of

Morelos, Mexico. Five plants of each F1 were planted,

spaced at 0.25 m between plants and 0.75 m between

rows, and selfed at flowering to produce F2 progeny.

Phenotypic data were taken from five plants of each

cross at both stations. A few F1 ears were saved for

advancing inbreeding. Days to anthesis (DA) and plant

height (PH) were measured on each F1 cross at the two

locations mentioned above. PH was recorded for each

plant as the distance between the ground surface and

the top of the tassel. DA was recorded for each plot

when at least 50% of the plants had reached anthesis.
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The phenotypic value of each parental line was cal-

culated as the mean of all of its F1 progeny from at

least two cross combinations. Hence, the GCA was

used as a surrogate for phenotypic trait of each inbred

line.

Analysis of the phenotypic data was carried out

using SAS 9.0 (SAS Institute 2002). For F1 crosses,

the analysis of variance (ANOVA) across two envi-

ronments (two locations) was performed and variance

components of genotype, environment, G 9 E and

residual effect were estimated. Broad-sense heritabil-

ity (H2) was calculated according to Knapp et al.

(1985) as: H2 = rg
2/(rg

2 ? rge
2 /n ? r2/nb); where rg

2 is

the genetic variance, rge
2 is the genotype 9 environ-

ment interaction variance, r2 is the error variance, n is

the number of environments, and b is the number of

replications in each experiment.

SNP genotyping and in-silico mapping

We used an Illumina oligo pool assay (OPA) with 1,536

SNPs for genotyping 148 lines. The SNP genotyping

details and the detailed information on each SNP can be

found in the previous study (Yan et al. 2010b). SNP

genotyping and data calling were performed using the

Illumina BeadStation 500 G (Illumina, Inc., San Diego,

CA, USA) according to the protocol described by Fan

et al. (2006). The genotypes of F1 crosses were inferred

from the genotypes of their parental lines. If one or both

parents were heterozygous, the genotype of their F1

cross was recorded as missing.

Genetic structure analysis

We performed principal component analysis (PCA) to

visualize genetic relationships among the 148 inbred

lines and 654 F1s by using the software NTSYSpc

(Darroch and Mosimann 1985). PCA for the 148 lines

used 1,266 SNPs with good quality (i.e. polymorphic

SNPs with less than 10% missing values and a

heterozygosity less than 15%), and PCA for the 654

F1s used 872 SNPs with missing values less than 20%.

Relative kinship analysis

A relative kinship matrix was calculated by adopting

the software package SPAGeDi (Hardy and Vekemans

2002). Familial relatedness between each two lines

from the 148 inbred lines and between two F1

combinations were calculated based on the molecular

data. To infer the kinship matrix, 1,266 and 384 SNPs

were used for the inbred lines and F1 crosses,

respectively, with less than 10% missing values.

Association analysis

Association analysis was performed on 148 inbred

lines as well as 654 F1s based on the PCA, K and

PCA ? K models integrated in TASSEL 3.0 (Zhang

et al. 2009), respectively. In the case of the 148 inbred

lines, association was detected between 1,184 SNPs

having a minor allele frequency (MAF) of greater than

0.05 and means of two traits (DA and PH) evaluated in

two locations (TL and AF, CIMMYT stations). In the

analysis of 654 F1s, association between 756 SNPs

having minor genotype frequency of greater than 0.05

and the same traits mentioned above was detected.

Predicting hybrid performance

The mixed linear model used to estimate additive and

dominant effects of SNPs is expressed as:

y ¼ Xbþ Z1aþ Z2d þ e

where y is an NF1 9 1 vector of phenotypic values in

the training set; NF1 is the number of F1 crosses; b is

fixed effects (population mean); X is an NF1 9 1

vector with all elements 1; Z1 is an NF1 9 NM design

matrix with elements equal to 1, -1 and 0 if the marker

type is MM, mm and Mm, respectively; NM is the total

number of markers; a is an NM 9 1 vector of additive

effects of markers; Z2 is an NF1 9 NM design matrix

with elements equal to -1 or 2 if the marker type is

homozygous or heterozygous, respectively; d is an

NM 9 1 vector of dominant effects of markers; and

e is an NF1 9 1 vector of residual effects.

In the mixed model, a, d and e are assumed to be

random and follow normal distributions N(0, VAI),

N(0, VDI) and N(0, VeI), respectively, where VA is the

additive variance, VD is the dominant variance, and Ve

is the error variance. Estimates of genetic variance

(VG) and residual variance (Ve) are obtained from an

analysis of variance phenotypic means across loca-

tions. VA and VD are determined from VG by

VA ? VD = VG and VA/VD = 2.5. Since it is not

possible to partition VA and VD from VG based on this

data, the ratio 2.5 is empirically designated consider-

ing the proportion of VA and VD for the trait of interest.

Mol Breeding

123



The variance of additive and dominant at each of the

NM maker loci are assumed to be VA/NM and VD/NM,

respectively. The effects of a and d are obtained by

solving the mixed-model equations (Henderson 1984),

with b as fixed effect, and a and d as random

effects.The F1 hybrid performance is predicted by the

following:

ŷ ¼ b̂0 þ
Xn

i

xiâi þ zid̂i

� �
þ e

where b̂0 is the estimate of overall mean; n is the

number of SNPs; âi and d̂i are the estimates of additive

and dominant effects of the ith SNP, respectively; and

xi and zi are indicators with elements of 1 and 0 if the

locus is homozygous, 0 and 1 if the locus is

heterozygous.

In this study we used PH and DA as the target traits

for predicting hybrid performance. The actual pheno-

typic data from two locations were averaged and 9 F1

crosses were excluded because of missing data at one

location. Thus, prediction was performed based on

information from a total of 645 F1s. A subset,

composed of 600 randomly chosen F1 crosses, was

considered as the training set, and the remaining 45

crosses were regarded as the testing set. In order to get

better estimates of prediction effectiveness, we sam-

pled training and testing sets ten times. The perfor-

mance of PH and DA of the testing set was predicted

on the basis of data from the training set, using the

entire set of genome-wide markers (i.e. 1,266 SNPs) as

well as different subsets of markers selected by

different criteria. Regression of observed on predicted

phenotypes of the testing set, which could provide

estimates of the slope and the model fit (R2), was

informative for evaluating prediction accuracy.

The significance of each marker among the 1,184

and 756 SNPs was represented by the P value from the

association analysis on inbreds and F1s, respectively.

According to association results on inbreds performed

based on the PCA ? K model, markers used for

prediction were selected as follows. All markers were

ranked according to their P value, from the lowest to

the highest. Subsets of SNP markers with sizes of 25,

50, 100, 250, 500 and 1,184 used for prediction were

selected, following their ranking of P values. In

addition, subsets of markers with the same sizes as

mentioned above were randomly selected from the

entire set of 1,266 SNPs, to be used for prediction.

When referring to the results of association analysis on

F1s using the PCA ? K model, the same procedure

for marker selection was used, but the sizes of the

marker subsets were 25, 50, 100, 250, 500 and 756.

Results

Phenotypic data of F1 crosses between GEM

and CML

Pedigree and heterotic groups of the CML and GEM

lines are summarized in Table S1. F1 crosses of

GEM 9 CML or CML 9 GEM grew well in CI-

MMYT stations. The 654 F1 crosses and their parent

combinations are listed in Table S2. Table S3

summarizes means and ranges of DA and PH, for

both F1s and 148 inbred lines at AF and TL stations in

2008. On average, F1 populations had longer flower-

ing days (DA) at TL than at AF. However, plants grew

relatively taller (PH) at AF than at TL. The broad-

sense heritabilities of DA and PH were 84.0 and

65.9%, respectively (Table S3).

SNP genotyping

A total of 1,330 SNPs (87.4%) were successfully

called with less than 20% missing data. Within the

1,330 SNPs, 34 were mono-polymorphic, 11 had more

than 15% heterozygous data and 19 had more than

10% missing data in the 148 inbred lines. These SNPs

were excluded from further analysis. Therefore, a total

of 1,266 SNPs were used for the final data analysis for

the 148 inbred lines. CMLs (n = 94) showed a range

of heterozygosity from 0 to 12.8%, with an average of

1.1%. This is a normal level of residual heterozygosity

in inbred lines of maize. On the other hand, seven lines

out of 54 GEM lines had more than 20% heterozy-

gosity. These need further selfing to reduce the

residual heterozygosity.

SNP distribution and allelic frequency in GEM

and CML

Among the 1,266 SNPs, 20 were mapped to contigs

with unknown location and the remainder were evenly

distributed across the whole genome, ranging from 77

SNPs on chromosome 7 to 217 SNPs on chromosome 1

(Table 1). The allelic frequency of each SNP varied in
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different germplasm groups, as shown in Fig. 1. A total

of 3.6% alleles (46/1,266) were unique to CMLs and

4.4% alleles (56/1,266) were unique to GEM lines. The

distribution of allelic frequency difference between

GEM lines and CMLs is shown in Figure S1. Nearly

half of the SNPs showed an allelic frequency differ-

ence of more than 0.2. Those SNPs (n = 126) with

more than 0.4 allelic frequency difference were

distributed on the whole genome. The physical position

of these SNPs and their allelic frequency difference are

summarized in Table S4.

Genetic structure and kinship relation

Principal component analysis classified three clear

subgroups corresponding to GEM SS and NSS

heterotic patterns, and CMLs, among the 148 inbred

lines. Based on the genotypic classification, nine GEM

SS lines were located between the main group of GEM

SS lines and NSS lines, indicating they were of mixed

origin. Within CMLs, there were no obvious sub-

groups identified by PCA (Fig. 2). The F1 populations

were separated into two groups based on the first two

principal components (Fig. 3).

Table 1 Distribution of the

1,266 SNPs used in the

study across the maize

genome

Chromosome No. of

SNPs

1 217

2 132

3 140

4 134

5 154

6 98

7 77

8 115

9 96

10 83

Unknown 20

Total 1,266

Fig. 1 Allelic frequency of each SNP of 1,266 bi-allelic SNPs

used in this study varied in different germplasm groups: shown

in blue in the group of GEM lines, shown in red in the group of

CML lines, and shown in grey in all 148 inbred lines. (Color

figure online)

Fig. 2 Principal component analysis (PCA) of 148 inbred lines
based on 1,266 SNPs. CML CIMMYT maize line, GEM-SS
germplasm enhancement of maize-stiff stalk, GEM-NSS germ-

plasm enhancement of maize-non-stiff stalk. Lines in the circle
may have a mixed origin

Fig. 3 Principal component analysis (PCA) of 654 F1 crosses

based on 872 SNPs. Lines in Group 1 NSS (non-stiff stalk) are

from the crosses CIMMYT maize line (CML) B or A/B 9 germ-

plasm enhancement of maize (GEM) NSS lines. Lines in Group 2

SS (stiff stalk) are from the crosses CML A or A/B 9 GEM SS

lines. Lines in the circle are from the GEM parental lines which

have a mixed origin
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The two large F1 clusters constructed by the GEM

genotypes and CMLs were expected to form clearly

separate genetically different groups or heterotic

groups that were influenced by SS and NSS heterotic

patterns of GEM lines. The SS lines 9 CML A and

A/B lines formed Group 2 of the F1 cluster and the

NSS lines 9 CML B and A/B lines formed Group 1 of

the F1 cluster. A small part of the F1 crosses located

between Group 1 and Group 2, and their GEM parents,

were the nine lines mentioned above, which may have

a mixed origin (Fig. 3).

The distribution of pair-wise kinship relation

between any two lines from both inbred lines (148)

and F1s (654) showed complex familial relatedness

among these lines (Fig. S2). In both cases, more than

half of the pairs had a kinship value of 0. The majority

of the pair-wise kinship values in the case of the inbred

lines were less than 0.2. However, they were less than

0.3 for the F1s.

Association analysis

Associations were conducted to evaluate the perfor-

mance of PCA, K, and PCA ? K models for control-

ling false positives in using both inbreds and F1s. In

Figure S3, quantile–quantile plots of -log10(P) value

for results of association for the two traits based on

both inbreds and F1s indicated that the models can

effectively control Type I error in both cases when K

was taken into account. When performing association

analysis for both DA and PH on inbreds, all the three

models were similar, and the PCA ? K model showed

a little superiority to the other two in reducing the

Type I error (Fig. S3a). However, compared to the

PCA model, the K and PCA ? K model can greatly

reduce the Type I error for both traits when performing

association analysis on F1s (Fig. S3b).

Prediction of hybrid performance for PH and DA

For both PH and DA, the correlations between

predicted values based on different sets of SNP

markers and observed values are shown in Fig. 4.

Prediction accuracy was investigated as the correla-

tion (R2) between the predicted and the true pheno-

typic values. For PH, R2 ranged from 0.354 to 0.418,

when using the most significant makers based on

results of association analysis on inbreds (marker type

A) (Fig. 4a). On the other hand, when the most

significant markers based on the results of association

analysis on F1s (marker type B) were used, R2 ranged

from 0.339 to 0.398 (Fig. 4a). R2 reached a peak when

using the 500 most significant markers in the case of

marker type A, and using the 250 most significant

markers in the case of marker type B (Fig. 4a). The

regression coefficients were 1.639 and 1.452 for the

peaks in marker type A and marker type B, respec-

tively, which indicated that the predicted values of F1

hybrids were slightly over-estimated. In the case of

randomly selected markers (marker type C), R2

basically increased with marker density, and ranged

from 0.085 to 0.364. Unexpectedly, when the number

of selected markers became smaller (e.g. n B 500),

using marker type A or B outperformed using the same

number of randomly selected markers, but the differ-

ence between them decreased with an increase in the

number of markers (Fig. 4a).

Similar results were obtained for the hybrid

performance prediction of DA (Fig. 4b). In both PH

and DA, using fewer, but trait-associated, markers

showed a relatively higher prediction accuracy than

employing the entire set of genome-wide markers

(n = 1,266). In this study, applying the results of

association analysis on inbreds and on F1s in genomic

selection to predict hybrid performance produced

similar prediction accuracy in both PH and DA.

Discussion

Implications of utilizing temperate lines in tropical

maize breeding program

Recently, a large number of SNP markers have

become available in maize for genome-wide finger-

printing, and they have been successfully used in

maize genetic diversity and genetic structure analysis

with reasonable results (Wen et al. 2011; Yan et al.

2009; Yang et al. 2010). In tropical maize breeding,

research and development of the germplasm that

belongs to different heterotic groups and/or patterns is

fundamental for breeding high-yielding maize

hybrids. CIMMYT maize gene pools and populations

have been traditionally divided into flint and dent

heterotic patterns, largely by phenotypic selection

(Taba and Chávez 2007; Ortiz et al. 2010). CML lines

are grouped by heterotic pattern A and B, or A/B

based on the hybrid performance with testers
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(http://www.cimmyt.org/ru/component/content/article/

459-international-maize-improvement-network-imin/

434-cimmyt-maize-inbred-lines-cml). In this study,

SNP markers were used to identify the genetic struc-

ture for both GEM lines and CMLs. Based on the SNP

data, the heterotic patterns of GEM lines are clearly

shown to be associated with SS and NSS patterns bred

by the United States GEM (Salhuana and Sevilla 1995;

Salhuana et al. 1998).

However, based on the SNP data, the divergence

shown between the heterotic groups (i.e., A and B

type) within CMLs is not as large as that of GEM lines

which contain 50 or 75% temperate germplasm by

pedigree. Although the difference within temperate

lines may be overestimated compared to that within

tropical lines due to ascertainment bias arising from

the SNPs used in this study, similar results on the

heterotic patterns of CMLs were reported based on

SSR data (Xia et al. 2005), indicating that obvious

heterotic groups are not apparent because CIMMYT

lines have been developed from gene pools and

populations with a wide germplasm base. The devel-

opment of heterotic groups at CIMMYT was rather

recent, after inbreeding in these gene pools and

populations for line development from the mid-

1980s (Vasal et al. 1999; Reif et al. 2003). With the

availability of the maize genome and the advances in

genotyping by sequencing technology, we may obtain

larger numbers of SNPs with good quality for

characterizing maize lines, making it possible to

control ascertainment bias (Elshire et al. 2011).

Exotic germplasm can provide new desirable

alleles for line and population improvement. Large

allelic frequency differences observed between GEM

and CML, together with the unique alleles harbored

within both germplasms, imply a mutual improvement

between the two sets of germplasm. The obviously

larger genetic divergence between the SS and NSS

heterotic groups of the GEM lines, as compared to the

A and B heterotic groups of CMLs, demonstrated the

accumulations of different genes or alleles in opposite

heterotic groups of GEM lines. In order to enhance

heterosis in grain yields of tropical maize, it is

suggested that wider resources for introgression of

exotic germplasm are needed to increase the genetic

distances between opposite heterotic lines and popu-

lations (Ron Parra and Hallauer 1997; Reif et al.

2003). According to the current results of molecular

characterization and trial evaluation, GEM lines

showed great potential to be utilized in tropical maize

improvement. However, they need to acquire good

adaptation in tropical maize production environments

as they contain 50 or 75% elite temperate germplasm

and only 25 or 50% tropical germplasm. The strategy

of developing F1s between lines of GEM SS and CML

heterotic type A, and also between lines of GEM NSS

and CML heterotic type B, was initially employed for

introgression of useful alleles from GEM to CML. F1

crosses were fairly well adapted at CIMMYT stations

(AF and TL) in general, producing reasonable ears;

whereas the performance of some GEM lines was poor

in the breeding nursery. At the AF station, plants were

affected by late infection of tropical leaf rust. The

plants stood well at both stations, showing good stalk

strength and root development. In general, minimum

ear rot was observed. Variable F1s were selected and

followed by second and third selfing-selection seasons

in both TL and AF.

A new population for association analysis

and Type I error control using different models

Crosses between exotic germplasm and elite local

germplasm are fundamental to a crop enhancement

program. Thus, a population of F1 crosses can be

formed. Developed from limited parental lines, F1

crosses provide us with novel material for association

analysis. Larger population size compared to their

parental lines as well as the easy accessibility of their

phenotypic information underlies the utility of F1s for

association analysis, which is especially applicable

and helpful in a breeding program, as presented here.

Several methods have been proposed for associa-

tion analysis in populations with a complex genetic

structure. In many plant species, it is shown that a

mixed-model approach outperforms the much dis-

cussed methods developed in the context of human

genetics (Zhu et al. 2008). A recent study indicated

Fig. 4 Regression of observed on predicted single-cross

performance of a plant height and b days to anthesis on

different types of markers. The upper part shows the model fit

(R2) and the lower part shows the estimate of the slope

(regression coefficient). Marker type A: selection of markers

referring to results of association analysis in inbreds, and

starting from the marker with highest significance. Marker type
B: selection of markers referring to results of association

analysis in F1s, and starting from the marker with highest

significance. Marker type C: randomly selected markers from

the 1,266 SNPs

b

Mol Breeding

123

http://www.cimmyt.org/ru/component/content/article/459-international-maize-improvement-network-imin/434-cimmyt-maize-inbred-lines-cml
http://www.cimmyt.org/ru/component/content/article/459-international-maize-improvement-network-imin/434-cimmyt-maize-inbred-lines-cml
http://www.cimmyt.org/ru/component/content/article/459-international-maize-improvement-network-imin/434-cimmyt-maize-inbred-lines-cml


that the K model and two mixed models (Q ? K and

PCA ? K) performed well for all traits in the maize

panel of 527 maize inbred lines, and both Q ? K and

PCA ? K models performed slightly better than the K

model for all three traits (Yang et al. 2011). The

performance of these models in the present study was

consistent with these previous reports. It is suggested

that the K matrix is generally superior to the model

using only Q for association analysis, since the Q

matrix only provides a rough dissection of the

population differentiation (Yu et al. 2006; Myles

et al. 2009). In our study, the K model greatly

outperformed using only PCA when conducting

association analysis on F1s, and it was slightly better

than the latter when conducting association analysis

on inbreds. This makes sense because the K matrix

captures the relatedness between each pair of individ-

uals within the panel while PCA or Q takes only a few

axes of variation into account (Myles et al. 2009). In

terms of Type I error control, the difference in the

performance of PCA between association analysis on

inbreds and F1s may due to the genetic background of

the samples. The 148 inbred lines are samples with

both population structure and familial relationship.

However, the heterozygous F1 population also has

population subdivision and the familial relatedness

among the individuals within it is more complex. The

PCA model which contains 10 dimensions of principal

components in this study may be enough to capture the

differentiation within the 148 inbred lines and correct

for its genetic relatedness.

The potential and strategy of genomic selection

in maize breeding

The accurate prediction of maize single crosses among

heterotic groups could facilitate hybrid breeding. With

the rapidly increasing number of available molecular

markers, prediction based on genome-wide markers

has become a new trend for identifying superior single

crosses. By applying best linear unbiased prediction

(BLUP), Bayesian analyses and other statistical

methods, selection on genetic values predicted from

the whole genome markers could substantially

increase the rate of genetic gain in animals and plants

(Meuwissen et al. 2001; Crossa et al. 2010; Hayes

et al. 2009; Jannink et al. 2010). In this study, a strong

correlation between the predicted and the true pheno-

typic values was identified, when using the entire set

of genome-wide markers. The high prediction accu-

racy indicates the potential and efficiency of genomic

selection, based on our model, for predicting hybrid

performance.

However, prediction with the higher marker density

has not performed best for the traits (PH and DA) in

this study. The prediction accuracy benefitted from

adoption of the markers that were associated with

quantitative trait loci for both traits. Other than using

the entire set of genome-wide markers, the selection of

markers with the highest significance, and accounting

for only 40 and 20% of the total marker number for PH

and DA, respectively, provided the highest prediction

accuracy. The results demonstrated that using fewer,

but trait-associated, markers may be more effective

than exploiting the entire set of genome-wide markers

as they produce less noise in estimating the genetic

values. There may also be a trade-off between marker

size and marker quality (i.e., the effect of each marker

on the specific traits), which affects the prediction

accuracy of genomic selection models for hybrid

performance. From the present results, it is suggested

that genomic prediction combined with association

analysis could improve prediction efficiency and

reduce costs.

On the other hand, using a limited number of

markers is insufficient to detect significantly associ-

ated markers with some important traits of maize. It

poses a question about using genome-wide association

study (GWAS) for identifying and empirically vali-

dating a set of significant markers for genomic

selection. Myles et al. (2009) suggested that 10–15

million markers may be necessary for performing

GWAS in diverse maize varieties. Even when adopt-

ing markers developed from the expressed portion of

the genome (i.e., assuming 50,000 genes in the maize

genome and 10–20 markers developed within the

expressed regions of each gene), 500,000–1,000,000

well-chosen markers is considered sufficient (Yan

et al. 2011), which currently may not be achievable in

most research laboratories. Moreover, most quantita-

tive traits like flowering time (Buckler et al. 2009) and

drought tolerance (Messmer et al. 2009) are controlled

by many SNPs of small effect. The same situation was

identified in the case of human height, where almost

88% of the variation due to SNPs has been undetected

in published GWAS because the effects of the SNPs

are too small to be statistically significant under overly

stringent significance tests (Yang et al. 2010). This
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conclusion was confirmed by the present results, to

some extent, where selecting a certain number of

markers, according to their significance, performed

best in the prediction. In this study, only about 1,000

SNPs were used, but high prediction efficiency was

observed, which may be due to the relatively simpler

population background as well as the even genomic

distribution of those SNP markers. Present results

imply that profiling and detecting SNPs or genes

previously underlying the target traits may be more

informative for genomic selection and enhancing

predictive power. For a given trait, using a fixed set

of markers or genes for prediction may be more

efficient. GWAS, as well as the transcriptional data

suggested by Frisch et al. (2010), and metabolite

profiles as predictors reported by Steinfath et al.

(2010), can be complementary to genomic selection,

and these items should be utilized together if possible.
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