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SUMMARY

With the advent of rapid genotyping and next-generation sequencing technologies, genome-wide associa-

tion study (GWAS) has become a routine strategy for decoding genotype–phenotype associations in many

species. More than 1000 such studies over the last decade have revealed substantial genotype–phenotype

associations in crops and provided unparalleled opportunities to probe functional genomics. Beyond the

many ‘hits’ obtained, this review summarizes recent efforts to increase our understanding of the genetic

architecture of complex traits by focusing on non-main effects including epistasis, pleiotropy, and pheno-

typic plasticity. We also discuss how these achievements and the remaining gaps in our knowledge will

guide future studies. Synthetic association is highlighted as leading to false causality, which is prevalent

but largely underestimated. Furthermore, validation evidence is appealing for future GWAS, especially in

the context of emerging genome-editing technologies.

Keywords: GWAS, genetic architecture, epistasis, pleiotropy, phenotypic plasticity, synthetic association,

genome editing.

INTRODUCTION

Since the concept was first applied in maize in 2001 (Thorns-

berry et al., 2001), association mapping studies in crop spe-

cies have revealed links between tens of thousands of

genomic regions and various traits. Association mapping is

a quantitative approach for determining if a genomic variant

is associated with a trait of interest using a natural popula-

tion or a collection of diverse individuals. Themain hypothe-

sis states that a particular phenotype shared by a subset of

individuals will be highly linked to neighboring genetic vari-

ations (linkage disequilibrium, LD; Glossary Box) in their

recent ancestor, where the causal mutation and correspond-

ing phenotype arose. Recent advances in high-throughput

genotyping technologies and increases in computational

power havemade it possible to carry out association studies

on genome-wide sets of genetic variants, an approach

known as genome-wide association study (GWAS), thus

greatly changing the mapping of quantitative traits. While

relatively low-resolution and time-consumingmethods such

as linkage mapping are typically used for mapping in bipar-

ental populations, the emergence of GWAS provides an

opportunity to discover genes or regions associated with

given traits in a relatively high resolution and unbiasedman-

ner in broad-based and diverse populations. GWAS can also

reveal the global landscape of a trait, known as its genetic

architecture (Figure 1), a term used to describe the genetic

basis of a trait based on information regarding the number

of causative genes or alleles, their interactions, and the dis-

tribution and patterns of their effects (Hansen, 2006).

Sequencing-based GWAS has become a routine tool in

crop genetics over the last decade, making outstanding

achievements in two major ways. The first is in redefining

the concept of a ‘trait’, from conventional developmental

traits (e.g. Buckler et al., 2009; for maize flowering; Huang

et al., 2010; for rice agronomic traits), to individual

responses to environmental factors (biotic or abiotic stress

tolerance) (e.g. Li et al., 2017 for rice blast resistance;

Wang et al., 2016 and Guo et al., 2018 for drought toler-

ance in maize and rice, respectively; Kuroha et al., 2018 for

periodic flooding adaptation), to large-scale molecular-

level quantification (e.g. Fu et al., 2013 and Chen et al.,

2018 for determination of the structural transcriptome of

the maize kernel, respectively; Chen et al., 2014 and Wen
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et al., 2014a with respect to metabolism in rice and maize),

to more complex phenotypic variations as long as they are

heritable and measurable, such as rice heterosis (Huang

et al., 2015) and maize haploid male fertility (Ma et al.,

2018a). The level of precision is expected to extend further

in the next decade, from single-trait variables to a variable

vector depicting a dynamic developmental process with

the recent development of plant phenomics techniques

(Yang et al., 2013b; Tardieu et al., 2017; Singh et al., 2018).

The second impressive achievement is that as increasing

numbers of crop species enter the ’omics era, GWAS is

being performed not only in cereals (in particular rice and

maize) but also in a broad range of crops, including soybean

(i.e., Hwang et al., 2014; Wen et al., 2014b; Zhang et al.,

2015a; Fang et al., 2017a; Leamy et al., 2017), cotton (Fang

et al., 2017b; Wang et al., 2017b; Du et al., 2018; Ma et al.,

2018b), tomato (Lin et al., 2014; Tieman et al., 2017; Zhu

et al., 2018), cucumber (Shang et al., 2014; Zhang et al.,

2015c), sesame (Wei et al., 2015), peanut (Pandey et al.,

2014; Zhang et al., 2017b), peach (Cao et al., 2016), and let-

tuce (Zhang et al., 2017a). These studies, together with

purpose-developed populations, catalogs of allelic

variants, and corresponding genotype–phenotype associa-

tions, provide unprecedented resources for understanding

crop functional genomics. These studies have not only val-

idated known trait associations, but also identified new

favorable haplotypes or, in some cases, revealed previ-

ously unknown pathways.

Despite great success, current GWAS analysis has clear

limitations, especially issues of population structure corre-

lation and low-frequency causal alleles leading to false-

negative results (Korte and Farlow, 2013). For example,

only one gene (ZmCCT) was revealed for flowering time

using a diverse association mapping panel consisting of

500 inbred lines (Yang et al., 2013a), as flowering time is a

typical adaptive trait and is always confounded (i.e., highly

correlated) with population structure. It has been widely

accepted that many false negatives occur for such con-

founded traits when correcting for population structure in

GWAS (Huang and Han, 2014). Another example showed

only five inbred lines (<1%) possessing functionally alter-

native alleles at the Brachytic2 locus for plant height

among 527 lines (Xing et al., 2015); it is thus not possible

to identify this locus using routine association mapping

analysis. A similar phenomenon is also seen in rice, where

(putative) causal alleles within most of the cloned yield-

related quantitative trait loci (QTLs) are at low frequency in

diverse germplasms (2% for Ghd7, Xue et al., 2008; Lu

et al., 2012; 1% for GS3, Fan et al., 2006; Mao et al., 2010;

2% for qGL3, Zhang et al., 2012; 6% for TGW6, Ishimaru

et al., 2013). Solving these issues by developing novel sta-

tistical models to explore rare functional alleles (Zhu et al.,

2011; Listgarten et al., 2013; Kaakinen et al., 2017) or

employing artificially designed populations to balance alle-

lic frequencies and control population structure (Buckler

et al., 2009; Dell’Acqua et al., 2015; Romero Navarro et al.,
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Figure 1. Complex principles of genetic architecture. (a) Demonstration of additive and dominant effects for a two-locus model. Locus A only presents an addi-

tive effect, and dominance of locus B occurs as the phenotype of the heterozygous allele deviates from the average of the two homozygous alleles. These two

loci show no epistatic effects with each other, as displayed in (b) and (c). (b) The different alleles of locus A show distinct effects on trait variance among differ-

ent states of locus B, with the same direction. (c) The alternative alleles of locus A express similar effects on trait variance with opposite direction under different

backgrounds of locus B. Because inbred lines are typically studied in genome-wide association studies, the heterozygous allele has been removed to simplify

the interaction models in (b) and (c). (d) Presence of pleiotropy in red quantitative trait loci (QTLs) or genes as these show effects on at least two non-correlated

traits; blue QTLs or genes represent non-pleiotropic loci as they only contribute to one trait. (e) Absence of plasticity. No phenotypic difference exists under dif-

ferent environments (E1 and E2); each colored point represents a different genotype. (f) Presence of phenotypic plasticity without existence of a genotype–envi-
ronment interaction (G 9 E), as all genotypes alter their phenotypes in parallel under different environments. (g) Co-existence of phenotypic plasticity and

G 9 E, as all genotypes alter their phenotypes but to distinct extents or/and in distinct directions under different environments.
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2017; Wen et al., 2018) are of great importance for GWAS.

As these matters have been extensively discussed previ-

ously (Gibson, 2012; Korte and Farlow, 2013; Xiao et al.,

2017; Cockram and Mackay, 2018), they will not be the fur-

ther focus of the present review.

For the foreseeable future, GWAS will continue to be

a common research tool for providing a bird’s-eye view

of the genetic structure of any trait of interest. The gen-

eration of various ’omics data will increase and enable

OWAS (’omics-wide association study; Glossary Box)

(Xiao et al., 2017). As the number of GWAS-based candi-

date gene regions has greatly increased in recent years,

a review of new insights into crop genetic architecture

is required. We summarize here (Box 1) how recent

GWAS results have led to an updated view of several

important issues of genetic architecture, including epista-

sis, pleiotropy, and phenotypic plasticity. We also dis-

cuss the likely causes of synthetic association, an

increasingly common GWAS artifact. We examine the

impact of these new biological insights and problems

on the practice of GWAS and emphasize the need to

validate GWAS results, especially by using the increas-

ingly popular genome-editing technology.

EPISTASIS: NEGLIGIBLE OR NEGLECTED?

Epistasis represents a non-linear interaction between two

or more segregating loci with different alleles across

genetic backgrounds. This type of interaction between seg-

regating loci is expected to contribute to phenotypes by

biologically plausible mechanisms (Mackay, 2014). How-

ever, most studies have focused on additive genetic vari-

ance (Figure 1a), with relatively little attention paid to

epistasis (Figure 1b, c), the importance of which is still

being established in different biological systems. While its

prominent role in heterosis has been widely recognized in

various crops (Yu et al., 1997; Li et al., 2001; Melchinger

et al., 2007; Garcia et al., 2008; Shen et al., 2014; Jiang

et al., 2017), the prevalence of epistasis in maize trait archi-

tecture is thought to be small (Buckler et al., 2009; Tian

et al., 2011; Xiao et al., 2016), or results in a large effect

only at specific loci (Studer and Doebley, 2011; Durand

et al., 2012). However, many studies indicate that epistasis

is pervasive in contributing to various quantitative trait

phenotypes (Manicacci et al., 2009; W€urschum et al., 2011;

Zhang et al., 2015a; Wen et al., 2016; He et al., 2017; Luo

et al., 2017; Mathew et al., 2018) and can be further used

to improve the accuracy of trait prediction for both inbreds

and hybrids (Maurer et al., 2015; Santos et al., 2015; Luo

et al., 2017). These results were observed in a variety of

populations, such as a recombinant inbred line (RIL) popu-

lation, a multi-parent advanced-generation inter-cross

(MAGIC) population, and diversity panels, and for different

traits, such as morphological characteristics, resistance to

disease, and cellular metabolite levels.

Even though the importance of epistasis is increasingly

recognized, the detection of epistatic effects is difficult,

especially in GWAS using populations of unrelated individ-

uals. Large numbers of variants, each present at a low fre-

quency, create a major challenge, leading to low statistical

confidence in the level of epistasis. Thanks to recently pro-

posed efficient computing algorithms (Hemani et al., 2011;

Gyenesei et al., 2012; Lishout et al., 2015; Zhang et al.,

2016; Cowman and Koyuturk, 2017) and alternative, non-

exhaustive modeling approaches (Guo et al., 2014; Leem

et al., 2014; Karkkainen et al., 2015; Wang et al., 2015a;

Zhang et al., 2016; Mathew et al., 2018), both the computa-

tional cost and multiple-testing burden can be effectively

addressed and even high-order interactions can be uncov-

ered, provided there is a sufficient number of individuals

in the population under study. Still, because of the need

to test alleles pairwise, those with relatively high fre-

quency will provide the greatest probability of discover-

ing epistasis, and low-frequency alleles at either locus

will reduce the statistical power. This could be why epi-

static effects appear to be population dependent. For a

panel with diverse lines, a large population size is

needed to reach the high statistical power necessary to

uncover QTLs with moderate or subtle epistatic effects.

However, artificially designed populations with balanced

allele frequency, such as MAGIC (Mathew et al., 2018),

promise to greatly facilitate epistasis discovery. Interest-

ingly, Wei et al. (2018) found that loci identified using

genotypic-variability-based GWAS can be used to evalu-

ate potential epistatic interactions.

In general, integrating improved algorithms with experi-

mental crop populations will improve the accuracy of future

interaction studies. These insights will enable future crop

engineering, as demonstrated by a pioneering study in

tomato that optimized inflorescence architecture and high

yield by eliminating undesirable epistasis (Soyk et al., 2017).

PLEIOTROPY: WHAT IS THE PROMISE OF GWAS?

Understanding pleiotropy, a well known phenomenon

identified a century ago (Stearns, 2010) in which one

allele or gene affects multiple phenotypes (Figure 1d), is

crucial for understanding genetic mechanisms and for

simultaneous breeding of multiple complex traits. While

the presence of pleiotropy is often mistakenly assumed

when a locus is found to be associated with two or more

traits, there are at least two additional assumptions that

need to be emphasized. The first is that the association

with two or more traits comes from the same causal

gene within the locus, which is particularly important as

the mapping resolution in crop GWAS limits the ability

to discriminate between multiple candidates in high LD

with each other. The second assumption is that the asso-

ciated traits should be uncorrelated or, more precisely,
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they should be independently affected by the same cau-

sal gene rather than affected by confounding between

the phenotypes (Solovieff et al., 2013). This makes the

identification of pleiotropy more difficult in both plant

species and human beings.

Pleiotropic effects have largely not been systematically

explored in crops, even though a number of pleiotropic

genes have been implicated in specific case studies. For

example, Ghd7 controls heading date, grain number, plant

height, and flag leaf area in rice (Xue et al., 2008; Tan

et al., 2012; Weng et al., 2014), and its ortholog in maize,

ZmCCT, affects both flowering time and disease resistance

(Hung et al., 2012; Yang et al., 2013a; Wang et al., 2017a).

Several recent studies have attempted to evaluate the

shared genetic basis for crop genotype�phenotype links

on a genome-wide basis. Schulthess et al. (2017) identified

several potential pleiotropic loci for wheat yield-related

traits using multiple-trait-based association mapping. This

study also presented a simulation analysis of factors,

including minor allele frequency and QTL effect sizes and

distances for different traits, affecting the power to identify

pleiotropy, which can be used as reference for future study

designs. However, the population diversity and low geno-

typic density in this study limited the differentiation of true

pleiotropy from the effects of closely linked genes or spuri-

ous pleiotropy (Glossary Box). By integrating a large and

diverse soybean collection with whole-genome sequenc-

ing, Fang et al. (2017a) found that genetic sharing for dif-

ferent traits is widespread and, interestingly, the E2 locus

exhibits pleiotropy for both yield and seed quality. Pleio-

tropy has also been identified for maize carbon and nitro-

gen metabolism (Zhang et al., 2015b).

Beyond the accumulative GWAS of various traits for

crop species, improved methods provide an unprece-

dented opportunity to effectively dissect the contribution

of pleiotropy to crop trait variation. Commonly applied

multi-trait-based methods have been comprehensively

reviewed (Solovieff et al., 2013; Hackinger and Zeggini,

2017) and can be applied to crop studies. We emphasize

that whole-genome gene expression QTL (eQTL) results

can also be used to analyze pleiotropy, and Zhu et al.

(2016) have proposed a strategy to integrate eQTL data

with knowledge of QTL resulting in observable phenotypes

to identify the variants displaying pleiotropic effects for

both trait and gene expression. This method was further

applied by Hannon et al. (2017) to study the pleiotropic

variants associated with quantitative traits and DNA

methylation.

Pleiotropy seems common and important for increasing

trait prediction accuracy for complex human traits (Maier

et al., 2018), but our understanding of this phenomenon is

still greatly limited in crop genetics. As the number of

genotype–phenotype links grows, pleiotropy will draw

greater attention from crop researchers.

PHENOTYPIC PLASTICITY: A POWER TO NURTURE THE

NATURE

Most current efforts focus on mapping the genetics of

complex trait variance in populations; however, the pheno-

typic performance of an individual can change with fluctu-

ating environment. The ability to respond to

environmental change by expressing variable phenotypes

without genotypic change is called phenotypic plasticity

(Figure 1e–g). The phenomenon of different alleles display-

ing varied plastic responses is described as genotype–envi-
ronment interaction (G 9 E). The significance of

phenotypic plasticity, which was considered to be geneti-

cally heritable, has been realized for several decades (Brad-

shaw, 1965; Weaver and Ingram, 1969; Schlichting, 1986;

Gavrilets and Scheiner, 1993; Dewitt et al., 1998). These

preliminary studies described morphological changes

mainly by performing theoretical or simulation investiga-

tions. Various quantitative genetic models controlling phe-

notypic plasticity have been proposed, including the allelic

sensitivity model and the over-dominance model (Schei-

ner, 1993). Current genetic mapping studies provide an

unparalleled chance to explore the quantitative architec-

ture of changing phenotypic responses and possibly even

uncover the underlying genes (Wang et al., 2013; Zhai

et al., 2014). Phenotypic plasticity adds a significantly com-

plex layer to the genetic architecture of complex traits.

Phenotypic measures of plasticity include two aspects:

the degree of change in the phenotypic mean across envi-

ronments and the pattern of such change (Schlichting and

Levin, 1984). The coefficient estimated from regression

analysis, and summary statistics including range, standard

deviation, and coefficient of variation are simple measures.

However, these only describe the amount of change with-

out indexing the pattern of change. The coefficient

obtained from regression along an environmental gradient

can be specified as the reaction norm to describe both the

degree and pattern of plastic change (Eberhart and Russell,

1966; Freeman, 1973); however, the environmental gradi-

ent is trait and genotype dependent and therefore difficult

to characterize when numbers of individuals are measured.

After obtaining the measurements, phenotypic plasticity

can be mapped genetically and compared in the same way

as phenotypic mean, or modeled along specific frame-

works (Wang et al., 2013; Zhai et al., 2014).

In a recent pioneering study, Kusmec et al. (2017) ana-

lyzed 23 agronomic traits in 4�11 environments using a

nested association mapping (NAM) population consisting

of about 5000 RILs. By partitioning the trait into phenotypic

mean, linear, and non-linear plasticities with the Bayesian

Finlay�Wilkinson Regression (FWR) (Su et al., 2006), struc-

turally and functionally distinct candidate genes were

found in association with mean and plastic phenotypes.

This distinct genetic architecture provides a further
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opportunity to simultaneously manage trait mean and

plasticity for a given environment or for a changing climate

(Nicotra et al., 2010). Flowering time is a classic example

used in model and crop plants to study the genetic control

of both mean and plastic phenotypes (Ungerer et al., 2003;

Anderson et al., 2012; Brachi et al., 2013; Mendez-Vigo

et al., 2016; Mao et al., 2017). Another recent study on sor-

ghum flowering time (Li et al., 2018) indicated that model-

ing plasticity can not only explain the genetic response to

different environments, but also enable highly accurate

prediction of trait performance in new environments.

Beyond such studies on individual traits, a new model has

been proposed (Zhou et al., 2015) to explore the genetic

architecture of phenotypic plasticity in multiple correlative

traits.

Even though the statistical framework (Wang et al.,

2013; Zhai et al., 2014; Zhou et al., 2015) has been estab-

lished for years and representative studies (Kusmec et al.,

2017; Li et al., 2018) have been performed, our understand-

ing of the mechanisms of plasticity and its effect on shap-

ing crop diversity along environmental gradients is still

limited. The lack of deep insights into this common and

important issue may be because of the massive data sets

needed, including environmental measurements in

addition to standard genotypic and phenotypic variations.

Particularly, multiple environmental conditions along a

gradient of variation are necessary to unravel the quantita-

tive attributes of phenotypic responses. When describing

the interaction between genome and environment, under-

standing phenotypic plasticity helps interpret the evolu-

tionary and environmental forces modifying genetic

architectures (Josephs, 2018). Therefore, investigating phe-

notypic plasticity will also contribute to crop improvement,

when integrated with breeding programs that are facing

climate change and instability.

SYNTHETIC ASSOCIATION: MISLEADING FOR CAUSALITY

Confusingly, sometimes the non-causative loci show more

significant associations in GWAS than the causative ones.

In other words, the causative genes are sometimes located

away from the GWAS peaks. This has been observed in a

number of association studies in plants including Ara-

bidopsis (Atwell et al., 2010; Kerdaffrec et al., 2016), rice

(Huang et al., 2010, 2011; Yano et al., 2016), sorghum (Lin

et al., 2012), and tomato (Lin et al., 2014). This misleading

association is called synthetic association (or ‘ghost associ-

ation’), which is presumed to be caused by LD between

common tagged markers and rare causative variants
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Figure 2. Synthetic association is likely to be caused by the presence of multiple-causal alleles within a gene. (a) Modified example of tomato SIMYB12 for fruit

color (Lin et al., 2014). The single-nucleotide polymorphism (SNP) showing synthetic association (SNPSA) is the most significant, while three causal alleles are

identified with less or no significance. Each mutation in the promoter and coding regions can individually alter the phenotype from red to pink, which causes no

perfect match of any variant to the trait. Interestingly, the SNPSA alleles (205 versus 120) are correlated with the combination of mutated alleles versus wild-type

genotypes (204 versus 121) of the other variants. Even though it is less significant, the deletion locus can be identified because of the rare (n = 4) frequency of

the other two causal variants. (b) Another example is simplified from sorghum Sh1 for shattering (Lin et al., 2012). Two causal alleles are identified by experi-

mental exploration. For the deletion locus, while the deletion is present in 37 individuals, plants carrying the absent allele show shattering (SH) and non-shatter-

ing (NS) in comparable numbers (25 versus 37). This makes the deletion locus undetectable in standard single-variant-based association mapping. A similar

situation occurs for the splicing variant. Any variant (SNPSA) correlated with the wild-type allele (with the SH trait) and the combination of both functional

mutants, if present, will unexpectedly be uncovered but have nothing to do with causality. This case is different from (a) as both causal loci (the deletion locus

and the splicing variant) are common and undetectable (62 versus 37).
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(Dickson et al., 2010; Chang and Keinan, 2012). The rare-

allele hypothesis can be understood such that the common

variant would show significant association signal with a

given trait when it is linked to a low frequency but large-

effect causative variant. This can also explain the ‘missing

heritability’ issue, because the common markers (identified

with greater significance) can explain only a limited frac-

tion of trait variance as a result of their imperfect associa-

tion with the causative low-frequency variant. However,

some cases do not follow the simple rare-allele assump-

tion and can be explained by another phenomenon, that

the trait variation is caused by multiple alleles within one

gene (Lin et al., 2012; Yano et al., 2016).

We tend to interpret the synthetic association issue as

the ‘presence of multiple causative alleles’, in which the

standard single-variant-based GWAS has insufficient

power to detect any of these because of the genetic inter-

ference between different alleles (Figure 2). Given that

mutation constantly generates new variants, multiple inde-

pendent alleles within one gene leading to the same phe-

notype could be common. Haplotype- or gene-based

methodologies have good potential for identifying such sit-

uations, although current haplotype-based association

mapping is still imperfect (Hayes, 2013) and both inferring

accurate haplotypes and incorporating haplotypes into

association mapping remain particularly challenging in

plants. Additionally, the multiple functional alleles in such

cases of synthetic association with high LD are unlikely to

be captured by haplotype phasing. A better understanding

of the underlying causes of synthetic associations would

help in the design of future studies to detect causative

genetic variants while avoiding artifacts.

VALIDATION: A NECESSARY ADOPTION FOR FUTURE

GWAS

Even with a strong theoretical foundation and efforts to

remove undesired noise (i.e., population structure) and

employ strict probability cut-offs, false-positive associa-

tions will still occur due to the enormous number of statis-

tical inferences and other unaccounted factors, such as

low-accuracy genotype calling at some loci (Browning and

Yu, 2009), small population size (Finno et al., 2014), and

synthetic associations introduced above. This calls for an

independent validation process, which has seldom been

incorporated into GWAS design. Validation includes at

least two methodologies: one validating candidates of

interest in different populations, the associations would be

assumed to be more likely when being detected in inde-

pendent studies; and the other using laboratory experi-

ments, such as candidate gene knock-out, over-expression,

or genetic complementation. Cross-population validation is

currently achieved by integrating association mapping in

diverse panels or linkage mapping in RIL population(s) or

F2 populations. Taking as an example the recent study on

cloning ZmCCT9, which affects maize flowering time

(Huang et al., 2018), this locus was simultaneously

Box 1 Highlights

• Crop GWAS has ushered a transition to ’omics-wide association mapping (OWAS), promising a better understanding

of genetic architecture of complex traits.

• The large number of studies provides an unprecedented opportunity to increase in-depth understanding of the classi-

cal concepts of epistasis and pleiotropy.

• Phenotypic plasticity is largely ignored and requires intensive data collection and general statistical modeling.

• Synthetic association exists frequently in GWAS and is considered to result from the presence of multiple indepen-

dent alleles within a locus.

• Emerging novel technologies such as genome editing can be used for further GWAS validation.

Box 2 Open questions

• What is the pervasiveness of the non-additive effect, is this effect dominant for certain traits, and what is the underly-

ing mechanism?

• Is it possible to map causal genes (or variants) with ultra-high resolution to understand the generality of pleiotropy

and how to apply it in future genetic improvement?

• Which genes and mechanisms contribute to phenotypic plasticity, and will identify these help to predict crop

responses to climate change?

• Is synthetic association widespread, and how can it be addressed effectively?

• How far are we away from the precise design of new cultivars by integrating natural and created variations?
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identified by NAM (Buckler et al., 2009) and maize-teosinte

RIL populations under association and linkage mapping.

Furthermore, the causal allele, an InDel of a harbinger-like

transposon, has been identified in an association panel

containing 513 diverse maize inbred lines (Li et al., 2013)

and validated in the above two populations used to map

the locus. Another model case is the association mapping

of rice chlorophyll content in a diverse panel of 529 individ-

uals followed by three customized F2 populations to

validate GWAS signals (Wang et al., 2015b). With increas-

ing numbers of populations and corresponding genotypic

and phenotypic variations, association mapping in multiple

populations is becoming possible and should make the

observed hits much more effective and reliable. At this

point, cross-population analysis could be extended to

cross-species analysis for similar or homologous traits. A

better understanding of the conserved, differentiated, and/

or dynamic genetic architecture for any trait of interest will

Glossary Box

• Linkage disequilibrium (LD): is a phenomenon in which co-occurrence of alleles at different loci is non-random in a

given population, being either higher of lower than expected if they were independent. The presence of genetic link-

age makes it is unnecessary for association studies to examine every polymorphism since linked variants are strongly

correlated.

• Genome-wide association study (GWAS): is a statistical approach of mapping quantitative trait loci to link phenotypes

of interest to whole-genomic genotypes by taking advantage of historic linkage disequilibrium.

• ’Omics-wide association study (OWAS): extends genome-wide association studies to multiple ’omic variations,

including genomics, transcriptomics, proteomics, and metabolomics, with the aim of characterizing a full molecular

functional and dynamic picture of variations in phenotype.

• Quantitative trait locus (QTL): is a genomic confidence interval associated with a trait of interest, which varies in

degree of effect size and physical length, and includes at least one causal gene or other functional element. QTLs

exert main, epistatic, and interaction with the environment effects, while the main effects can be additive or domi-

nant.

• Epistasis: describes an interaction relationship between genes (or loci) in which the effect of one gene can vary (in

size or even direction) among different alleles of the other gene, leading to non-linear consequences for phenotypic

variation. Epistasis can modify effects in an additive and/or dominant manner at the interacting loci, with epistatic

effect models described as additive-by-additive, additive-by-dominance, and dominance-by-dominance. Additive-by-

additive interactions are the most studied as only a small population is required.

• Pleiotropy: is a phenomenon in which one gene directly contributes to more than one seemingly unrelated pheno-

typic trait. The likely underlying mechanism is that the product of a given gene can be either used by various cells or

function in cascade-like signaling to various targets. As genes usually function as networks and developmental phe-

notypes are interactive, it is very hard to distinguish true biological pleiotropy from mediated pleiotropy and spurious

pleiotropy. Mediated pleiotropy occurs when phenotype 1 lies on a causal path to phenotype 2; an association

between gene(s) with phenotype 1 will thus also occur with phenotype 2. Spurious pleiotropy is reflected by both

genotypic and phenotypic aspects: the identified variant is in high linkage disequilibrium with two causal variants in

distinct genes that contribute to different phenotypes; or different phenotypes are misclassified into one phenotype

such that any causal variant/gene affects one of them and a spurious association occurs for the other.

• Phenotypic plasticity: is used to describe all kinds of phenotypic responses to environmental change without any

change of genome sequence. In theory, not all phenotypic plasticity is exactly the same, but it covers the concept of

genotype–environment interaction (G 9 E), which presents a narrower situation that different alleles respond to envi-

ronmental change to different degrees. However, in practice, G 9 E is almost equivalent to phenotypic plasticity with

only a slight difference in emphasis. Phenotypic plasticity is considered more important for plants than animals due

to their immobility and has been revealed to be highly relevant to plant traits including flowering timing, leaf shape

variations, allocation of soil nutrients, and size of seeds.

• CRISPR-based genome editing: is a genetic engineering technology targeting specific genome locations with opera-

tions including insertion, deletion, modification, or replacement. CRISPR is an abbreviation of Clustered Regularly

Interspaced Short Palindromic Repeats, a family of DNA sequences in Bacteria and Archaea that play key roles in the

prokaryotic defense system. CRISPR associated proteins (Cas) process these sequences and cut matching viral DNA

sequences. CRISPR/Cas form the basis of the emerging highly efficient and specific CRISPR-based genome-editing

technology.

© 2018 The Authors
The Plant Journal © 2018 John Wiley & Sons Ltd, The Plant Journal, (2019), 97, 8–18

14 Hai-Jun Liu and Jianbing Yan



be valuable, and such cross-species analysis has already

been implemented in rice (Huang et al., 2011) and cereals

(Chen et al., 2016; Liu et al., 2017).

Beyond statistical inference, molecular and genetic

experimentation is a reliable way to validate GWAS hits.

This is still difficult because of the low throughput and

case dependence of most wet experiments. Fortunately,

the emerging genome-editing technologies promise an

effective and high-throughput approach. Recently, two Chi-

nese teams have simultaneously created genome-wide tar-

geted mutant libraries using the CRISPR/Cas9 technique in

rice (Lu et al., 2017; Meng et al., 2017). Obtaining the func-

tional gene within each GWAS peak should be quicker than

ever expected by combining high-throughput forward- and

reverse-genetic techniques.

CONCLUSIONS: PROSPECTS AND CHALLENGES

The power of crop GWAS to explore the genetic architec-

ture of complex traits has been demonstrated in multiple

species, and this number will continue to increase rapidly.

However, most studies are of limited scope to the main (ad-

ditive) effect of genetic architecture. This is why the present

review attempts to restate the complexity of the concept of

genetic architecture, exploring the architecture beyond

additive effects and underscoring the importance of under-

standing trait variability (Box 2). This complexity is not only

the result of differences in gene action, but also determined

by ontogenic gene networks or even epigenetic effects, and

the interaction with surroundings, including living neigh-

bors and greatly changing environmental conditions. Com-

pared with unprecedented achievements in the study of

main effects, the application of GWAS to non-linear effects

has been limited, providing only a rudimentary view of the

comprehensive picture of genetic architecture.

Sun and Wu (2015) draw a complete picture of genetic

architecture and propose a conceptual framework. They

consider the current genetic mapping, i.e., linking geno-

mic variants to individual phenotypes, as the first stage,

followed by functional mapping, systems mapping, net-

work and ecosystem mapping, and consideration of bio-

logical mechanisms, treating each trait as a dynamic

vector, integrating full ’omics variations, and incorporat-

ing the role of ecological interactions in the formation of

complex traits. Such complexity makes future mapping a

great challenge for data collection, integration, and statis-

tical modeling.
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