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Abstract

Association mapping is a powerful approach for dissecting the genetic architecture of complex quantitative traits using
high-density SNP markers in maize. Here, we expanded our association panel size from 368 to 513 inbred lines with 0.5
million high quality SNPs using a two-step data-imputation method which combines identity by descent (IBD) based
projection and k-nearest neighbor (KNN) algorithm. Genome-wide association studies (GWAS) were carried out for 17
agronomic traits with a panel of 513 inbred lines applying both mixed linear model (MLM) and a new method, the
Anderson-Darling (A-D) test. Ten loci for five traits were identified using the MLM method at the Bonferroni-corrected
threshold 2log10 (P) .5.74 (a= 1). Many loci ranging from one to 34 loci (107 loci for plant height) were identified for 17
traits using the A-D test at the Bonferroni-corrected threshold 2log10 (P) .7.05 (a= 0.05) using 556809 SNPs. Many known
loci and new candidate loci were only observed by the A-D test, a few of which were also detected in independent linkage
analysis. This study indicates that combining IBD based projection and KNN algorithm is an efficient imputation method for
inferring large missing genotype segments. In addition, we showed that the A-D test is a useful complement for GWAS
analysis of complex quantitative traits. Especially for traits with abnormal phenotype distribution, controlled by moderate
effect loci or rare variations, the A-D test balances false positives and statistical power. The candidate SNPs and associated
genes also provide a rich resource for maize genetics and breeding.
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Introduction

Maize (Zea mays L.) is one of the most important food, feed and

industrial crops globally. Grown extensively under different

climate conditions across the world, maize shows an astonishing

amount of phenotypic diversity [1]. Identifying the underlying

natural allelic variations for the phenotypic diversity will have

immense practical implications in maize molecular breeding for

improving nutritional quality, yield potential, and stress tolerance.

With the rapid development of next generation sequencing and

high-density marker genotyping techniques, there emerges tre-

mendous interest in using association mapping to identify genes

responsible for quantitative variation of complex traits [2]. The use

of GWAS has been well demonstrated in model plants such as

Arabidopsis [3] and rice [4]. In maize, we examined the genetic

architecture of maize oil biosynthesis in 368 diverse maize inbred

lines with over 1.06 million SNPs obtained from RNA sequencing

and DNA array using the GWAS strategy [5]. Despite the great

potential that GWAS has to pinpoint genetic polymorphisms

underlying agriculturally important traits, false discoveries are a

major concern and can be partially attributed to spurious

associations caused by population structure and unequal related-

ness among individuals in a given panel [6]. A number of statistical

approaches have been proposed, among which the mixed linear

model (MLM) is one of the popular methods that can eliminate the

excess of low p values for most traits [6,7]. However, Zhao et al.

[8] performed GWAS using a NAÏVE model in each sub-

population and MLM with inferred population structure as a fixed

effect in the whole mapping panel of rice, and their results

suggested that MLM may lead to false negatives by overcompen-

sating for population structure and relatedness. To improve the

MLM, some strategies to best utilize marker data have been
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proposed [9,10]. The more we know about the genetics of a trait,

the greater our power is to detect the rest of the genetic

contribution. The problem is, of course, that we usually do not

know what the causal loci are, and methods that try to identify

them are prone to over-fitting [11]. Beló et al. [12] adopted the

Kolmogorov–Smirnov (KS) test for association analysis in each

subpopulation of the mapping panel and an allelic variant of fad2
associated with increased oleic acid level was successfully identified

based on modest density markers. However, detailed instructions

for the algorithm were not published. Most current GWAS

methods lack the power to detect rare alleles and this has limited

the application of GWAS, since rare alleles are common in maize

diversity collections [1,5]. Parametric tests of association are

sensitive to SNPs with minor allele frequencies, which can

artificially increase association scores. Balancing samples across

population subdivisions can homogenize allele frequencies,

elevating rates of globally rare variants that are common in

certain subdivisions [5].

In this study, 513 diverse maize inbred lines [13], representing

tropical/subtropical and temperate germplasm, were genotyped

by MaizeSNP50 BeadChip containing 56,110 SNPs [14]. RNA

sequencing (RNA-seq) was performed on 368 of these 513 lines

and 556,809 high quality SNPs with a minor allelic frequency

greater than 0.05 were obtained [5,15,16]. Seventeen agronomic

traits were systematically phenotyped for the 513 lines under

multiple environments and seasons (see Materials and Methods).

The objectives of this research were (1) to explore an efficient

imputation method to infer missing genotypes for the 145 inbreds

that were only genotyped by SNP-chip (low density), not by RNA-

seq (high density); (2) to develop a powerful statistical method for

GWAS to identify robust QTL for complex agronomic traits in

maize; and (3) to methodically analyze the underlying genetic

architectures of the 17 agronomic traits in the diverse maize

association mapping panel.

Results

Phenotypic variation for 17 agronomic traits
A brief description of each trait, its acronym, and evaluation

methodology was summarized in Supplementary Table S1. All of

the 17 traits in the 513 maize inbred lines were in accordance with

a normal distribution (Figure S1A, S2, S3, S4, S5, S6, S7, S8, S9,

S10, S11, S12, S13, S14, S15, S16, S17A). But the phenotype of

each trait showed distinct differences among four subgroups

(Figure S1B, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13,

S14, S15, S16, S17B). Analysis of Variance (ANOVA) showed that

population structure explained 39.5% of phenotypic variation

(PVE) for tassel main axis length, which was the highest among the

17 agronomic traits included in best linear unbiased prediction

(Table S2), indicating vulnerability of this particular trait to the

population structure and variable sensitivity of different traits to

population structure. Furthermore, heritability (h2) was highest

(0.683) for tassel main axis length (TMAL), while the lowest

heritability (0.386) was observed for kernel number per row

(KNPR) among the traits. Pair-wise Pearson’s correlation coeffi-

cients of the 17 traits revealed that phenotypes within a category

were more correlated. The values ranged from 0.001 between

kernel width and plant height to 0.95 between days to anthesis and

heading (Figure S18). These results indicated that all the tested

lines possessed significant genetic variability and can be used for

further genetic analyses.

SNP projection and imputation
The whole panel, 513 maize inbred lines, was genotyped using

the MaizeSNP50 BeadChip containing 56,110 SNPs (Illumina).

RNA sequencing was performed on immature seeds for 368 out of

the 513 maize inbreds using 90-bp paired-end Illumina sequenc-

ing, resulting in 2,445.9 Gb of raw sequencing data. 556,809 high

quality SNPs obtained by combining the two genotyping platforms

(RNA-seq and SNP array) [5,16] were used in the study. For the

additional 145 maize lines, the genotype calls of unique loci from

the integrated SNP data were projected based on regions of IBD to

physical maps constructed using 56110 SNPs, and then high-

density markers with more than 0.5 million SNPs were obtained

for all the lines. Out of 56,110 SNPs from MaizeSNP50 data set,

49728 SNPs overlapped with the integrated SNPs data based on

their physical positions (B73 RefGen_v2). The 49,728 common

SNPs were regarded as core or frame markers for projection based

on IBD regions. In order to evaluate the performance of IBD [17]

based projection, training and validation datasets were established

for chromosome 1, which had 7818 core markers from Illumina

Maize SNP50 and 88581 SNPs from the integrated data set. The

genotypes for one maize line with RNA-seq data in IBD regions

were assigned to the matched target line without RNA-seq data for

each SNP. The projection accuracy was calculated by comparing

inferred genotypes of 368 lines with their real genotype obtained

from RNA-seq. In addition, KNN algorithm [4] which infers a

large number of missing genotypes generated from low-coverage

genome sequencing was used to impute the missing genotypes of

the unique loci from RNA-seq SNP data based on 49728 frame

markers. Single method analysis, either IBD based projection or

KNN algorithm, cannot achieve both optimal accuracy and

coverage (see Materials and Methods). However, the combination

of IBD based projection and KNN seemed effective to infer a large

number of missing genotypes. In order to optimize the set of

imputation parameters, a simulation was performed on chromo-

some 1 in 368 lines (Figure S19). The simulation result on

chromosome 1 in 368 lines indicated that the missing rate was

reduced from 91.6% (1–7,818/88,581) to 12.8%, with an accuracy

rate 96.6% (Table S3). The optimal parameter combination (IBD:

SNPs number$150 in 5 Mb window size; KNN: w = 20, k = 6,

p = 27, r = 1) was then used to impute the missing SNPs for the

remaining 145 inbred lines, resulting in an 85.5% filling rate.

Therefore, our approach combining SNP-chip data and RNA-seq

SNP data with an effective projection procedure permits the quick

construction of a high-density physical map and integration of

SNPs from RNA-seq data set onto the whole population. This

Author Summary

Genotype imputation has been used widely in the analysis
of genome-wide association studies (GWAS) to boost
power and fine-map associations. We developed a two-
step data imputation method to meet the challenge of
large proportion missing genotypes. GWAS have uncov-
ered an extensive genetic architecture of complex quan-
titative traits using high-density SNP markers in maize in
the past few years. Here, GWAS were carried out for 17
agronomic traits with a panel of 513 inbred lines applying
both mixed linear model and a new method, the
Anderson-Darling (A-D) test. We intend to show that the
A-D test is a complement to current GWAS methods,
especially for complex quantitative traits controlled by
moderate effect loci or rare variations and with abnormal
phenotype distribution. In addition, the traits associated
QTL identified here provide a rich resource for maize
genetics and breeding.
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approach is also applicable to other genomes and genotyping data

from different platforms for a variety of downstream analyses.

Statistical power of the imputation-based association
test

The 368 maize inbreds with 556,809 SNPs genotyped by RNA-

seq and Maize SNP50 array were defined as Data set 1. In

addition, Data set 1 and 145 maize inbred lines with joint IBD-

based projection and KNN imputed genotypes were defined as

Data set 2 together. The 513 maize inbreds with Maize SNP50

array genotyped were defined as Data set 3. To evaluate the

reliability of imputed genotypes for 145 inbred lines, GWAS was

performed using MLM, with both Data sets 1, 2 and 3 focusing on

kernel oil concentration, which has been thoroughly analyzed in

our previous study [5].

For GWAS performed using MLM with both Data sets 1 to 3, a

total of 26, 32 and 8 significant loci were identified in Data sets 1

to 3, respectively, at the Bonferroni-corrected threshold (2log P.

5.74, a= 1,) (Figure 1). Almost all strong signals identified in data

sets 1 and 3 were also identified in data set 2 (Table S4). More

interestingly, we identified six additional significantly associated

loci in dataset 2 (2log P.5.74, a= 1), including the phosphoino-

sitide 3-kinases gene (PI3Ks) and the phosphatidylinositol transfer

protein, which is known to be involved in the oil concentration

trait [18] (Figure 1, Table 1, Table S4). This suggests that GWAS

carried out using the imputed genotypes with a larger population

(n = 513) increased the statistical power compared to the analyses

of RNA-seq genotyped SNPs with the smaller population size

(n = 368) or low density as DNA array SNPs with the same

population size (n = 513).

GWAS for 17 agronomic traits using MLM
GWAS for 17 agronomic traits using MLM was conducted with

Data set 2 and the results are summarized in Figures S1C, D, S2,

S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16,

S17C, D. A total of 19 significant SNPs from 10 loci were

identified for five traits (ear leaf width, ear length, kernel width,

plant height and tassel main axis length) (Table 2). No significant

SNP was found to be associated with the other 12 tested traits at

the Bonferroni-corrected threshold (2log P.5.74, a= 1). If we set

the Bonferrroni-corrected threshold as 2log P.7.05 (a= 0.05), no

SNPs were significant for all the 17 traits. It may be too strict to

use 0.05/n as the cutoff since not all the markers are independent.

One thousand permutation tests were conducted for three typical

traits with different level of population structure (kernel width, ear

height and days to heading) (Table S2). The results showed the

cutoff value at a= 0.05 is quite similar (Table S5) with 0.05/n.

Anderson-Darling (A-D) test, an alternative method for
GWAS

The A-D test [19] is a nonparametric statistical method and a

modification of the KS test [12,20] that gives more weight to the

tails of the distribution than the KS test. Since the identified loci

were much less numerous than expected using the MLM method,

the data set was reanalyzed using the A-D test. The same three

traits (kernel width, ear height and days to heading) were used to

perform 1000 time permutation tests to determine the cutoff

values. The results showed the cut off value at a= 0.05 varied

around the Bonferrroni-corrected threshold as 0.05/n (Table S5).

To simplify the procedures, we used the uniform cutoff (2log P.

7.05, a= 0.05) for further analysis. Flowering time is an important

and well-studied trait, and many QTL or candidate genes have

been identified [21,22]. Recently, several studies have confirmed

that ZmCCT is the gene underlying the major QTL affecting

flowering time on chromosome 10 [22,23]. Taking flowering time

as an example, it provides a good opportunity to test whether A-D

test is a feasible GWAS method for agronomic traits or not. Using

the A-D test, we identified 30 loci associated with days to heading

in Yunnan 2010. Around 20% of 30 loci were located within a

QTL support interval reported in NAM population [22]. If the

significant loci are randomly distributed in the genome, the

probability by chance is equal to the ratio between the whole-

length of QTL interval and the whole genome length (12%), which

represents an almost twofold enrichment compared with the 12%

expected by chance. A strong association (2log10 (P) = 7.59) was

identified in 1.7 Kb upstream of ZmCCT (Figure 2A). Four other

loci seem to be strong candidates including: one homologous gene

(CIB1) [24] shown to be involved in the regulation of flowering

time in Arabidopsis, two homologues containing CCT domain that

was demonstrated as key photoperiod regulatory gene in plants

Figure 1. Comparison of mapping results for kernel oil concentration in two different data sets. (A) Manhattan plots of mixed linear
model conducted in data set 1 and 2, respectively (data set 1: n = 368, without imputed genotypic data; data set 2: n = 513, 145 lines with imputed
genotypic data). The arrow and red boxes indicate the new loci that were not identified in previous study (Li et al, 2013); (B) Quantile-Quantile plots of
p-values of mixed linear model conducted in data sets 1 and 2, respectively.
doi:10.1371/journal.pgen.1004573.g001
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[25], and one locus previously shown to affect flowering time in

maize (Id1) [26] (Figure 2A). Using the MLM method, we were

only able to identify the marginally significant association for

ZmCCT (2log10 (P) = 5.64) and there were no strong signals in

other genome regions (Figure 2B). Therefore, A-D test could be a

more appropriate GWAS method for agronomic traits and we

performed GWAS using the A-D test in each subpopulation of

Data set 2 without controlling of population structure for all tested

traits. The total number of unique SNPs significantly associated

with the 17 traits was 678, of which 310 represented unique loci

(Figure S1E, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13,

S14, S15, S16, S17E). The numbers of significant SNPs associated

with different traits ranged from 1 (Cob Weight) to 35 (Tassel

branch number and Days to silking). For plant height, a total of

107 loci were identified at the Bonferroni-corrected threshold (2

log P.7.05, a= 0.05) (Table S6, S7). About 10% of the loci were

detected to affect two or more different traits that were consistent

with the observed correlations among the measured traits (Figure

S18). There were 101, 71 and 171 loci detected in three

subpopulations: SS (subpop-1), NSS (subpop-2) and TST (sub-

pop-3), respectively. A reasonable number of spurious associations

should be existed in the detected loci since the population structure

is not properly addressed in each subpopulation. Genomic control

[27–30] is a popular method to control the population stratifica-

tion and cryptic relatedness that was applied to adjust A-D test

statistic in each subpopulation in present study. In total, 19 loci

were significantly associated with 13 traits at the Bonferroni-

corrected threshold (2log P.5.74, a= 1) (Table S7).

To further examine the nature of statistically significant

associations, we examined the phenotype distributions of individ-

uals carrying each allele. Interestingly, some associations that

differed in the width of the phenotype distribution but which had

nearly identical trait means were found to be highly significant by

the A-D test but not significant by MLM. Figure 3 illustrated

significant loci for ear height with nearly identical trait means

(Figure 3A) and significant loci for ear leaf width with an obvious

shift of the means (Figure 3B). In total, 14.6% of significant loci

identified by A-D test do not have an obvious shift of the mean

between the two alleles (t-test, p.0.05) (Table S7). In this case the

differences between distributions are real, but the corresponding

genetic markers would not be useful in breeding if the objective is

to change the phenotypic means.

Comparison of different association mapping methods
based on simulated data

Causal allele frequencies and trait distributions are the main

factors that affect association mapping efficiency [1,31]. GWAS

data were simulated by adding phenotypic effects to real genotypic

data considering the population structure and epistasis from

MaizeSNP50 BeadChip [13] under three scenarios: a normal

distribution model, an abnormal distribution model caused by

uncertain effectors like phenotyping errors and an abnormal

distribution model caused by a larger effect QTN with rare alleles

(Methods). We compared our noticed A-D test with three other

mapping methods: Kruskal-Wallis (K-W) test and linear model

(LM) which does not correct for population structure; MLM which

corrects for population structure and kinship. Statistic power of the

four methods were compared under the same level Type I error.

For each method, QTNs were considered to be detected if their P
value were below the threshold determined by 1,000 times

permutation.

The results for the three simulation schemes are shown in

Figure 4 and can be summarized as follows: First, MLM has more

(Figure 4A, C, I) or similar (Figure 4G) power among the four

methods for major QTNs in schemes 1 and 3. Second, regardless

of the allele frequency, nonparametric methods usually have

greater power than LM and MLM for moderate QTNs

(Figure 4D–F, J–I). Third, A-D test is more powerful than K-W

Figure 2. GWAS of the phenotype of days to heading in Yunnan 2010. (A) GWAS result by Anderson–Darling test; (B) GWAS result by mixed
linear model.
doi:10.1371/journal.pgen.1004573.g002
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test in terms of QTNs with rare alleles (Figure 4J–I). Fourth,

nonparametric methods are much more powerful than parametric

methods in scheme 2 (Figure 4B, E, H, K) that the phenotype has

an abnormal distribution model caused by uncertain effectors.

Co-localization of QTL and candidate genes for
agronomic traits

We compared our mapping results for 17 agronomic traits with

QTL identified using different linkage segregation populations and

with previously reported known genes. Loci identified by the A-D

test which overlap with previously identified genes and loci

mapped in biparental populations are summarized in Table S7.

Considering the large confidence interval of previously reported

QTL, 3 independent RIL populations genotyped with high-

density SNP markers were used to conduct QTL analysis for 3

traits (kernel width, ear length and kernel number per row) of the

17 traits tested. For the compared traits, 9 loci (20% of the

detected loci) identified by the A-D test were within the QTL

confidence interval. One example is a major kernel width QTL

which was mapped in chromosome 7 with BK/Yu8701 RILs and

explains 18.7% of phenotypic variation (Figure 5B). Within the

QTL interval, significant SNPs- kernel width association was

detected (Figure 5A). Six candidate genes: GRMZM2G354539,

GRMZM2G052893, GRMZM2G052817, GRMZM2G354525,

GRMZM2G052610, and GRMZM2G052509 are found in the

associated interval. An expression quantitative trait locus (eQTL)

was detected for one (GRMZM2G052509, 2log10 (P) = 10.16) of

the six annotated genes, which can therefore be regarded as a

candidate gene for further study. The second example of overlap

included the SNP chr2.s_1972207(C/G) with 2log10 (P) = 9.06and

SNP chr2.s_1972176(C/G) with 2log10 (P) = 8.49 which were both

significantly associated with ear length, and a QTL affiliated with

ear length identified in B73/By804 RIL near the associated peak

(Figure 5D–F). SNP chr2.s_1972207 (C/G) and SNP chr2.s_1972176

(C/G) were the only two of the 36 SNPs within the gene

GRMZM2G061877, which encodes a DHHC zinc finger domain

containing protein, and both of them are in the CDS region. SNP

chr2.s_1972176 (C/G) makes no difference to the translated protein

sequence, while SNP chr2.s_1972207 (C/G) results in a change of

Isoleucine to Methionine. Several zinc finger proteins that play

important roles in maize inflorescence development, for instance

transcription factors RA1, RA2 and RA3 in ramosa pathways [32],

have been identified. In rice, a zinc finger transcription factor DST
directly regulates OsCKX2 expression in the reproductive meristem

leading to OsCKX2 regulated CK accumulation in the shoot apical

meristem (SAM) and, therefore, controls the number of the

reproductive organs; the dst mutant leads to lower plant height

and longer rice panicle length [33]. These zinc finger genes are

functioning as transcription factors. Since the DHHC protein domain

product of GRMZM2G068177, which was strongly suggested as a

candidate gene for the regulation of ear length, acts as an enzyme, this

may suggest a novel function of zinc finger proteins in monocot

reproductive organ development. However, further work is needed to

test this hypothesis. The third example, one QTL located on

chromosome 1 using K22/Dan340 RIL population which explains

11.8% of phenotypic variation for kernel number per row, also

overlapped with significant association signals (Figure 5G–I) Four

candidate genes: GRMZM2G088524, GRMZM2G022822, GR-

MZM2G108180 and GRMZM2G052666, located in a 200 kb

window around the significant signals, were predicted.

Discussion

The genome-wide imputation of genotypes has attracted much

attention given its broad applicability in the GWAS era. There are

a number of methods for imputing missing genotypes, but many

factors influence the accuracy of imputed genotypes [34,35]. In

this study, we proposed a two-step method combining IBD based

projection and KNN algorithm to infer missing genotypes,

resulting in 96.6% accuracy and 85.5% genome coverage in the

tested samples. Considering that the missing genotypes consist of

over 91.6% of our raw data set, this level of accuracy is acceptable.

Figure 3. The nature of statistically significant associations. The illustration of associations those are highly significant by Anderson–Darling
test, with nearly identical trait means for ear height (A) or with an obvious shift of the means for ear leaf width (B).
doi:10.1371/journal.pgen.1004573.g003
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Figure 4. Power comparisons in three simulation schemes for four different mapping methods: A-D, KW, MLM and LM. The ‘‘Power’’ was
defined as the detection frequency in 500 repeats for a certain QTN. For the purpose of computing power, a causal SNP was considered to be
detected only when the causal SNP was significant at a threshold from 1,000 times permutations. The power and type I error of major QTNs (A–C)
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Compared with other methods [4,17,34,35], the two-step method

has its advantages. Imputation based only on IBD regions ensures

high accuracy but a relatively low coverage rate. KNN algorithm

has been proven to be a good strategy for sequencing data [4],

however, it alone does not represent the true similarity of the

inbred lines due to low density of frame markers and rapid LD

decay in maize in our study. Therefore, we first used IBD based

imputation to increase marker density, and then the KNN

algorithm was used to infer the missing genotype, leading to high

coverage rate and imputation accuracy. Imputation error is often

caused by ignoring recombination and mutation within IBD

regions. In addition, if an inbred line with low density markers

share a region with two or more inbred lines with high density

markers and the missing genotypes are inferred on the basis of only

one of these lines, there is a high risk of error since the accuracy of

the projection depends on the identity between the projected and

chosen lines. Reanalysis of GWAS for kernel oil concentration

revealed consistent results and a higher detection power. Six more

associated loci were identified, most likely due to the increase in

sample size. The implication is that mapping resolutions are

enhanced by extracting moderately more information from the

genome and expanding sample size.

The detection of loci controlling complex traits using GWAS

has flourished and numerous statistical approaches for GWAS

analysis in plants have recently been described [14,36–40]. Linear

statistical models like ANOVA, general linear model (GLM), and

MLM establish significance cutoff by relying on the assumption

that target traits have normal distribution. However, sometimes

phenotype distribution in the moderate plant population is not

normal in the tails that may be due to the population size, field

experiment such as phenotyping errors, or genetic effects [31].

Based on our simulated data, nonparametric methods including A-

D and KW tests usually have greater power than LM and MLM

for abnormal phenotypes, rare alleles and moderate QTNs. It also

implies that A-D and KW tests should perform well to detect the

shifts of distribution as well as changes in the shape of distributions

[31]. A-D test possesses advantages than K-W test in the detection

of QTNs with rare alleles. However, MLM performs better than

A-D and KW test for the major QTNs especially those with

common alleles. However, we need to keep in mind that

population structure of the studied samples is the key confounder

for GWAS. In the measured 17 agronomic traits of present study,

we observed the phenotypic variation explained by population

structure ranged between 0.9% and 32.3% (Table S2). In the A-D

test, we didn’t account the confounding by population structure in

the subpopulation that may lead to false-positive findings.

Genomic control is a good alternative for controlling the statistic

inflations [27–30], different inflation factors were observed in

different traits and different subpopulations in present study (Table

S7). We detected 19 loci significantly associated with 13 traits at

the Bonferroni-corrected threshold (2log P.5.74, a= 1) (Table

S7) using genomic-control (lregress) to adjust our real phenotype

test statistic from A-D test. However, we also need to be careful

that the adjusted 2Log P might be over corrected, since A-D test

has already controlled part of the population structure and

genomic control method is affected significantly by the true

association signals , even for the agronomic traits may involve a

larger number of loci with small effects [21,36,37,41]. And the

influence of epistatic genetic effect to the genomic control is still

not explored [27–30]. Another thing need to be noticed is testing

within subpopulations (A-D test) and across the whole panel with

controlling the population structure (MLM) are different. Testing

within subpopulations changes allele frequencies of background

alleles and therefore possibly changes the epistatic interactions that

are mapped in an additive manner within subpopulations but were

not mapped across populations.

In general, A-D test could be a good complement to current

popular GWAS methods. As each method owning its own

advantages, the preliminary understanding of the traits studied is

needed for choosing GWAS methods or trying different GWAS

methods would be helpful especially for those studies only few or

none significant signals were identified by using only one method.

In this study, we performed GWAS using both MLM and A-D test

for 17 agronomic traits. In total, 18 overlapped regions were

detected by the two approaches (Table S7). The A-D test also

showed high concordance with previous studies in identifying a

higher number of QTL related to agronomic traits.

Our noticed nonparametric statistical approach is robust with

respect to non-normality, similarly to the KS test [12]. The KS test

tends to be more sensitive around the median value and less

sensitive at the extreme ends of the distribution. Thus, the KS test

is not always appropriate for calculating the significance of data

sets which differs at the tails of the probability distribution, while

the median remains unchanged [31]. The A-D test improves upon

the KS test because it has more sensitivity towards the tails of the

pooled sample. More importantly, the performance of the A-D test

for small samples is quite good, as demonstrated by numerous

Monte Carlo simulations [19]. This means that, for complex traits,

the A-D test can make a good use of SNPs that have minor allele

frequency and keep detection ability to the relatively small effect

loci. At the same time, it is important to recognize that there are

always limitations to what can be achieved using statistics. It seems

that A-D test does not work well for all traits. Interestingly, we

identified 14.6% associations by A-D test that differed in the width

of the phenotype distribution but which had nearly identical trait

means (Figure 3A). In these cases the differences between

distributions are real, but the corresponding genetic markers

would not be useful in breeding if the objective is to change the

phenotypic means. Instead, the associations appear to represent

allelic differences in the apparent trait stability. Therefore, to

confirm candidate loci, it is necessary to check both frequency

distribution and normality of the distribution curves (Figure 3).

Several studies in humans have confirmed that using multiple

methods for statistical inference critically enables the interpreta-

tion of results and engenders stronger candidates for experimental

follow-up [42].

We identified some genes affecting important agronomic traits

in maize that are very good candidates for future detailed analysis,

for allele mining to identify functional variation, and for marker

development. As whole genome sequences become available for

many crop species including maize, as well as for multiple

genotypes of the same species through resequencing, along with

cost-effective high-throughput genotyping systems and the next

generation of sequencing technologies, GWAS becomes practical

and its use in plant breeding will allow the manipulation of many

traits at the whole-genome level. Association mapping using a set

and moderate QTNs (D–F) with common allele frequency. The power and type I error of major QTNs (G–I) and moderate QTNs (J–L) with rare allele
frequency. A-D test: Anderson–Darling test; LM: linear model; K-W test: Kruskal-Wallis test; MLM: mixed linear model. Scheme 1, phenotypes with
normal distribution; Scheme 2, phenotypes with abnormal distribution caused by uncertain effectors; Scheme 3, phenotypes with abnormal
distribution caused by a larger effect QTN with rare allele frequency.
doi:10.1371/journal.pgen.1004573.g004
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of global diverse breeding germplasm and high-throughput SNP

markers, as shown in this study, provides high-resolution dissection

of the genetic architecture of complex traits. This knowledge in

turn will be useful not only for designing marker-assisted selection

strategies but also for optimizing conventional breeding systems.

Materials and Methods

Plant material and phenotyping
A total of 513 maize lines with tropical, subtropical and

temperate backgrounds representing the global maize diversity

were employed for genome-wide association mapping in this

study. All maize inbred lines have been well described in previous

studies [13,15] and the 513 maize lines were classified into four

subgroups based on population structure Q matrix: Stiff stalk (SS)

with 112 lines, Non-stiff stalk (NSS) with 116 lines, Tropical-

subtropical (TST) with 258 lines, and an admixed group with 27

lines (detailed information also can be downloaded at (www.

maizego.org/resource). A Randomized complete block design

with one to two replications was used for field trials in five

environments, including Ya’an (30uN, 103uE), Sanya (18uN,

109uE), Yunnan (25uN, 102uE) in 2009, Guangxi (23uN, 110uE)

and Yunnan (25uN, 102uE) in 2010. A row length of 3 m was used

for each line including 11 plants plot21 with 25 cm plant to plant

and 60 cm row to row distance. Five randomly selected plants

were used for phenotypic data acquisition in each line and the

mean data in each replication was used for phenotypic analysis. A

total of 17 economically important traits were phenotyped (Table

S1). These traits were divided into three categories: morphological

attributes (plant height, ear height, ear leaf width and length, tassel

main axis length, tassel branch number, and leaf number above

ear), yield related traits (ear length and diameter, cob diameter,

kernel number per row, 100-grain weight, cob weight and kernel

width), and maturity traits (days to heading, anthesis, and silking).

Best linear unbiased predictions (BLUP) for each line across five

environments were calculated using the MIXED procedure in

SAS (Release 9.1.3; SAS Institute, Cary, NC), and employed for

evaluating trait variation in the association panel.

Imputation yield and accuracy
Imputation methods have not been developed to deal specifi-

cally with low density of SNP marker data. Of the available

imputation models, identity by descent (IBD) based projection [17]

and the k-nearest neighbor algorithm (KNN) [4] seemed to

effectively infer a large number of missing genotypes. To assess the

performance of IBD based projection, preliminary tests for

chromosome 1 in 368 maize lines were conducted. We removed

genotype data without frame SNPs and then compared the

observed genotypes with those generated by projection. The

number of IBD regions with consecutive SNPs for 368 lines varied

from 1 to 285 on chromosome 1, and projection accuracy, defined

as the percentage of correctly projected genotypes ranged from

Figure 5. Co-localization of association peaks, QTL and well-
annotated candidate genes. A. Significant association signals on
chromosome 7 for kernel width; B. A major kernel width QTL
(R2 = 18.7%) was mapped on chromosome 7 from 129 Mb to 149 Mb
with BK/Yu8701 RILs and covered the significant association signals; C.

The phenotype’s frequency distribution histogram and normal distri-
bution curve at the peak SNP of kernel width; D. Significant association
signals on chromosome 2 for ear length; E. A major ear length QTL
(R2 = 5.7%) was mapped on chromosome 2 in B73/By804 RILs and
covered the significant association signals; F. The phenotype’s
frequency distribution histogram and normal distribution curve at the
peak SNP of ear length; G. Significant association signals on chr1 for
kernel number per row; H. A major kernel number per row QTL
(R2 = 11.78%) was mapped on chr1 in K22/DAN340 RILs and covered the
significant association signals; I. The frequency distribution histogram
and normal distribution curve at the peak SNP of kernel number per
row.
doi:10.1371/journal.pgen.1004573.g005
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74.8% to 99.1%, with an average of 92.6% (Table S3). The mean

error ratio pooled over in 32,015 IBD regions on chromosome 1

for the 368 maize lines was also calculated (Figure S19A, B), and

gradually declined with the increasing number of identical SNP

and size in IBD regions. Preliminary testing suggested that IBD

regions with 150 consecutive SNPs and a size of 5 Mb or more

were highly conserved in maize and error rate for projection was

well controlled within 5% (Figure S19A, B). The number of

qualified IBD segments ranged from 0 to 20 for 368 lines and

coverage rate, defined as the percentage of projected genotypes,

accounted for 61.99% of genomic regions on chromosome 1, with

projection accuracy increased from 92.59% to 96.62% on average

(Table S3). Therefore, IBD based projection for regions with 150

consecutive SNPs and a size of 5 Mb were applied for integration

of SNPs from RNA-seq data set onto the 145 additional maize

inbred lines. Alternatively, the K-Nearest Neighbor (KNN)

algorithm was also used to enrich the physical map of each line

constructed by 56,110 SNPs from MaizeSNP50 chip by inferring

the missing genotypes of the unique loci from RNA-seq SNP data.

In the preliminary test, this method was efficient and the

imputation accuracy and coverage rate for 368 lines were

97.48% and 75.35%, respectively (Table S3). The IBD based

projection and KNN imputation revealed high inferred accuracy;

however, the coverage rates were relatively low, with an average of

62% and 75%, respectively. In order to increase the coverage rate

and keep high imputation accuracy, IBD based projection and

KNN algorithm were combined to infer missing genotypes. The

IBD method can provide more frame SNPs for the KNN

algorithm, and simultaneously the KNN algorithm compensates

for the weakness of the IBD method in coverage rate. About 38%

of the genotypes were missing after prediction of IBD regions with

150 consecutive SNPs and 5 Mb size, and then the KNN

algorithm was used to impute the missing data, resulting in

95.8% of accuracy for the missing data. The joint IBD based

projection and KNN imputation of the genotypes of 368 lines

increased coverage rate from 62% to 87.2%, with a total accuracy

of 95.9% in the preliminary test. The projection accuracy was also

affected by heterozygosity of each line, which increased from

95.88% to 96.60% after excluding 44 lines with more than 10%

heterozygosity. The joint IBD based projection and KNN

imputation that performed well in the preliminary test was used

for the integration of SNPs from the high density SNPs data set

onto 145 maize lines genotyped by 56110 SNPs. For 145 maize

lines, 54.18% and 32.28% of loci across 10 chromosomes were

inferred through IBD based projection and subsequent KNN

imputation, respectively. As a result, 85.46% of loci for the whole

maize genome were filled. The average density for the whole panel

increased from 20 SNPs to more than 200 SNPs per Mb.

QTL mapping
The linkage analyses of ear length, kernel number per row, and

kernel width were performed in three recombination inbred line

(RIL) populations, BY804/B73 (197 individuals), K22/Dan340

(197 individuals), and BK/Yu8701 (165 individuals). All the RIL

lines and their parents were genotyped using Maize SNP50 assays

(Illumina) containing 56,110 SNPs [14]. The phenotype of BK/

Yu8701 in Henan 2011 and BLUP value from 5 environments of

BY804/B73 and K22/Dan340 were used. QTL mapping using

the composite interval mapping method [43] was performed in the

package QTL cartographer version 2.5 [44].

Statistical analysis and association mapping
ANOVA, correlation, and repeatability analyses for 17 agro-

nomic traits were conducted using SAS software (Release 9.1.3;

SAS Institute, Cary, NC). Heritability analysis and association

analysis for the 17 agronomic traits in Data set 2 were conducted

by MLM using TASSEL [45] software package. The observed p
values from marker-trait associations were used to display Q-Q

plots and Manhattan plots, using R. Permutation tests were used

to determine the cutoff for GWAS. Considering the computation

time, we only choose three typical traits with different population

structure effects (kernel width, ear height and day of flowering

time) as examples. The results showed that the cutoff values are

similar with the Bonferroni correction. To simplify the procedures,

we use the uniform Bonferroni-corrected thresholds at a= 1 and

a= 0.05 as the cutoffs. When performing n tests, if the significance

level for the entire series of tests is a, then each of the tests should

have a probability of P = a/n. When the numbers of markers was

556809 SNPs, at a= 1 and a= 0.05, the Bonferroni-corrected

thresholds for the p values were 1.79661026 and 8.9561028, with

corresponding 2log p values of 5.74 and 7.05, respectively.

Regression estimator (lregress) of Genomic Control inflation factor

was used [28]. Percentage of PVE by associated SNPs was

calculated by ANOVA. Informative SNPs and candidate genes at

the identified loci for the corresponding traits were from public

maize genome data set B73 RefGen_v2.

Simulation study
To compare the power and FDR of A-D test, Kruskal-Wallis

(K-W test) test, linear model (LM) and mixed linear model (MLM),

three schemes with different phenotype distribution were simulat-

ed by considering the QTN effects and allele frequency.

Scheme 1 was used to simulate a normal distribution phenotype

with the contribution of population structure, additive genetic

effect, epistatic genetic effect and residual effect [6]. The

population structure and epistasis explained 10% of the total

phenotypic variation, respectively. The additive effect was the sum

of all additive effects for 20 causal QTNs. For approaching the real

genetic architecture, we set 20% major QTNs explaining 30% of

the sum of all assigned genetic effect and 80% moderate QTNs

explaining 70% of the sum of all assigned genetic effect. Half of

major and moderate QTNs were rare alleles (MAF = 0.05–0.1)

and half were common alleles (MAF = 0.25–0.45). Larger genetic

effects were assigned to the rare alleles QTNs to ensure them could

explain the same proportion of phenotypic variation as common

alleles QTNs. The ratio of assigned genetic effects between rare

alleles QTNs (at MAF = 0.075) and common alleles QTNs (at

MAF = 0.35) was calculated based on 1=(1z1=p(1{p)k2). The

genetic effect was assigned to all SNPs, one at a time [6]. The

proportion of the additive effect was defined by narrow-sense

heritability which is the proportion of additive variance over the

total variance, and h2~0:7 was examined. The residual effect

followed a normal distribution and had a variance to satisfy the

contributions from additive and epistatic effects at the designated

level [6].

Scheme 2 was used to simulate an abnormal distribution

phenotype with a long tail on one side. On the basis of scheme 1,

10% of lines were randomly selected and added an extra residual

effect (1 to 6 fold standard deviation of the phenotype). All the

others were same.

Scheme 3 was designed to simulate an abnormal distribution

phenotype caused by a larger effect background rare QTN. The

additive effect was still the sum of all additive effects for 20 causal

QTNs. 1 background QTN, 3 major QTNs and 16 moderate

QTNs explaining 25%, 20%, 60% of the sum of all assigned

genetic effect respectively. The population structure effect,

epistatic effect and residual effect were consistent with scheme 1.
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Simulations of the phenotypes were repeated 500 times in all

schemes. All simulated phenotypes had been analyzed with the

four methods presented in the main text. 1,000 permutations had

been done separately for the four methods to obtain the threshold

at different type I error risk.

Anderson-Darling test
The Anderson-Darling two-sample procedure assumes that the

two samples have a continuous distribution function and we are

interested in testing the null hypothesis that the two phenotype

samples divided by two alleles of one SNP have the same

distribution, without specifying the nature of population:

H0 : F1~F2

The test procedure is as follows:

1. Calculate A2
kN :

The computational formula for A2
kN not adjusted for ties is,

A2
kN~

1

N

Xk

i~1
½1
ni

XL{1

j~1

(nFij{jni)
2

j(N{j)
�

and the corresponding adjusted for ties is,

A2
kN~

N{1

N2

Xk

i~1
½1
ni

XL

j~1

(NFij{niHj)
2

Hj(N{Hj){Nhj=4
�

where:

F1, F2 indicates the two phenotype distribution function

k = 2; i = 1, 2

ni = data number in the ith sample; j = 1,2,…,ni

N = total number of two samples’ individuals; N~n1zn2

xij = data in the i sample and j observation within that sample

L = the number of unique data, where it will be less than n with

tied data

z(j) = distinct values of all combined data ordered in ascendant

way denoted z(1),z(2),…,z(L)

hj = number of values in the pooled sample equal to z(j)

Hj = number of values in the combined samples less than z(j)

plus one half of the number of values in the combined samples

equal to z(j)

Fij = number of values in the ith sample which are small than

z(j) plus one half the number of values in this sample which are

equal to z(j)

2. Calculate sN :

Under H0, the variance of A2
kN is,

s2
N~var(A2

kN )~
aN3zbN2zcNzd

(N{1)(N{2)(N{3)

with:

a~(4g{6)(k{1)z(10{6g)S

b~(2g{4)k2z8Tkz(2g{14h{4)S{8Tz4g{6

c~(6Tz2g{2)k2z(4T{4gz6)kz(2h{6)Sz4T

d~(2Tz6)k2{4Tk

where:

S~
Xk

i~1

1

ni

, T~
XN{1

i~1

1

i
, g~

XN{2

i~1

XN{1

j~iz1

1

(N{i)j

3. Calculate TkN :

TkN~
A2

kN{(k{1)

sN

4. Refer TkN to the upper a percentiles tm(L) of the Tm

distribution table below, reject H0 at significance level a if TkN

exceeds the given point tk{1(a).If TkN is outside the range of the

table. Plotting the log-odds of a versus t1(a), a strong linear pattern

indicates that simple linear extrapolation should give good

approximate p values.

L 0:25 0:10 0:05 0:025 0:01

t1 Lð Þ 0:326 1:225 1:960 2:719 3:752

where:

m~k{1

URL. One R package (ADGWAS) for GWAS by Anderson-
Darling test can be downloaded here: http://www.maizego.org/
Resources.html

Supporting Information

Figure S1 Genome-wide association analysis of plant height. (A,
B) Phenotype histogram and distribution of subpopulations in 513

maize lines. (C) Manhattan plots of mixed linear model conducted

in imputation data, respectively. (D) Quantile-Quantile plots of p-

values of mixed linear model conducted in imputation data. Know

genes controlling the traits were labeled. (E) Summary of GWAS

results from Anderson-Darling test performed on each subpopu-

lation independently for plant height. The three subpopulations:

SS (subpop-1), NSS (subpop-2) and TST (subpop-3).

(TIF)

Figure S2 Genome-wide association analysis of ear height. (A,
B) Phenotype histogram and distribution of subpopulations in 513

maize lines. (C) Manhattan plots of mixed linear model conducted

in imputation data, respectively. (D) Quantile-Quantile plots of p-

values of mixed linear model conducted in imputation data. (E)

Summary of GWAS results from Anderson-Darling test performed

on each subpopulation independently for ear height.

(TIF)

Figure S3 Genome-wide association analysis of ear leaf width.

(A, B) Phenotype histogram and distribution of subpopulations in

513 maize lines. (C) Manhattan plots of mixed linear model

conducted in imputation data, respectively. (D) Quantile-Quantile

plots of p-values of mixed linear model conducted in imputation

data. (E) Summary of GWAS results from Anderson-Darling test

performed on each subpopulation independently for plant ear leaf

width.

(TIF)

Figure S4 Genome-wide association analysis of ear leaf length.

(A, B) Phenotype histogram and distribution of subpopulations in
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513 maize lines. (C) Manhattan plots of mixed linear model

conducted in imputation data, respectively. (D) Quantile-Quantile

plots of p-values of mixed linear model conducted in imputation

data. (E) Summary of GWAS results from Anderson-Darling test

performed on each subpopulation independently for ear leaf

length.

(TIF)

Figure S5 Genome-wide association analysis of tassel main axis

length. (A, B) Phenotype histogram and distribution of subpop-

ulations in 513 maize lines. (C) Manhattan plots of mixed linear

model conducted in imputation data, respectively. (D) Quantile-

Quantile plots of p-values of mixed linear model conducted in

imputation data. Know genes controlling the traits were labeled.

(E) Summary of GWAS results from Anderson-Darling test

performed on each subpopulation independently for tassel main

axis length.

(TIF)

Figure S6 Genome-wide association analysis of tassel branch

number. (A, B) Phenotype histogram and distribution of

subpopulations in 513 maize lines. (C) Manhattan plots of mixed

linear model conducted in imputation data, respectively. (D)

Quantile-Quantile plots of p-values of mixed linear model

conducted in imputation data. Know genes controlling the traits

were labeled. (E) Summary of GWAS results from Anderson-

Darling test performed on each subpopulation independently for

tassel branch number.

(TIF)

Figure S7 Genome-wide association analysis of leaf number

above ear. (A, B) Phenotype histogram and distribution of

subpopulations in 513 maize lines. (C) Manhattan plots of mixed

linear model conducted in imputation data, respectively. (D)

Quantile-Quantile plots of p-values of mixed linear model

conducted in imputation data. (E) Summary of GWAS results

from Anderson-Darling test performed on each subpopulation

independently for leaf number above ear.

(TIF)

Figure S8 Genome-wide association analysis of ear length. (A,
B) Phenotype histogram and distribution of subpopulations in 513

maize lines. (C) Manhattan plots of mixed linear model conducted

in imputation data, respectively. (D) Quantile-Quantile plots of p-

values of mixed linear model conducted in imputation data. Know

genes controlling the traits were labeled. (E) Summary of GWAS

results from Anderson-Darling test performed on each subpopu-

lation independently for ear length.

(TIF)

Figure S9 Genome-wide association analysis of ear diameter.

(A, B) Phenotype histogram and distribution of subpopulations in

513 maize lines. (C) Manhattan plots of mixed linear model

conducted in imputation data, respectively. (D) Quantile-Quantile

plots of p-values of mixed linear model conducted in imputation

data. Know genes controlling the traits were labeled. (E) Summary

of GWAS results from Anderson-Darling test performed on each

subpopulation independently for ear diameter.

(TIF)

Figure S10 Genome-wide association analysis of cob diameter.

(A, B) Phenotype histogram and distribution of subpopulations in

513 maize lines. (C) Manhattan plots of mixed linear model

conducted in imputation data, respectively. (D) Quantile-Quantile

plots of p-values of mixed linear model conducted in imputation

data. Know genes controlling the traits were labeled. (E) Summary

of GWAS results from Anderson-Darling test performed on each

subpopulation independently for cob diameter.

(TIF)

Figure S11 Genome-wide association analysis of kernel number

per row. (A, B) Phenotype histogram and distribution of

subpopulations in 513 maize lines. (C) Manhattan plots of mixed

linear model conducted in imputation data, respectively. (D)

Quantile-Quantile plots of p-values of mixed linear model

conducted in imputation data. Know genes controlling the traits

were labeled. (E) Summary of GWAS results from Anderson-

Darling test performed on each subpopulation independently for

kernel number per row.

(TIF)

Figure S12 Genome-wide association analysis of 100-grain

weight. (A, B) Phenotype histogram and distribution of subpop-

ulations in 513 maize lines. (C) Manhattan plots of mixed linear

model conducted in imputation data, respectively. (D) Quantile-

Quantile plots of p-values of mixed linear model conducted in

imputation data. Know genes controlling the traits were labeled.

(E) Summary of GWAS results from Anderson-Darling test

performed on each subpopulation independently for 100-grain

weight.

(TIF)

Figure S13 Genome-wide association analysis of cob weight. (A,
B) Phenotype histogram and distribution of subpopulations in 513

maize lines. (C) Manhattan plots of mixed linear model conducted

in imputation data, respectively. (D) Quantile-Quantile plots of p-

values of mixed linear model conducted in imputation data. Know

genes controlling the traits were labeled. (E) Summary of GWAS

results from Anderson-Darling test performed on each subpopu-

lation independently for cob weight.

(TIF)

Figure S14 Genome-wide association analysis of kernel width.

(A, B) Phenotype histogram and distribution of subpopulations in

513 maize lines. (C) Manhattan plots of mixed linear model

conducted in imputation data, respectively. (D) Quantile-Quantile

plots of p-values of mixed linear model conducted in imputation

data. (E) Summary of GWAS results from Anderson-Darling test

performed on each subpopulation independently for kernel width.

(TIF)

Figure S15 Genome-wide association analysis of days to

anthesis. (A, B) Phenotype histogram and distribution of

subpopulations in 513 maize lines. (C) Manhattan plots of mixed

linear model conducted in imputation data, respectively. (D)

Quantile-Quantile plots of p-values of mixed linear model

conducted in imputation data. Know genes controlling the traits

were labeled. (E) Summary of GWAS results from Anderson-

Darling test performed on each subpopulation independently for

days to anthesis.

(TIF)

Figure S16 Genome-wide association analysis of days to silking.

(A, B) Phenotype histogram and distribution of subpopulations in

513 maize lines. (C) Manhattan plots of mixed linear model

conducted in imputation data, respectively. (D) Quantile-Quantile

plots of p-values of mixed linear model conducted in imputation

data. (E) Summary of GWAS results from Anderson-Darling test

performed on each subpopulation independently for days to

silking.

(TIF)

Figure S17 Genome-wide association analysis of days to

heading. (A, B) Phenotype histogram and distribution of
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subpopulations in 513 maize lines. (C) Manhattan plots of mixed

linear model conducted in imputation data, respectively. (D)

Quantile-Quantile plots of p-values of mixed linear model

conducted in imputation data. Know genes controlling the traits

were labeled. (E) Summary of GWAS results from Anderson-

Darling test performed on each subpopulation independently for

days to heading.

(TIF)

Figure S18 Pair-wise Pearson’s correlation among 17 traits in

513 maize lines.

(TIF)

Figure S19 The mean error ratio and mean coverage ratio pool

over SNP number within IBD region (A) and size of IBD region

(B), respectively, on chromosome 1 for the 368 maize lines. (C)

Imputation accuracy and filling rate for each of 72 combinations

of variables of KNN. The combination, indicated by arrow, was

chosen for final data imputation.

(TIF)

Table S1 Description of the traits evaluated in the study.

(XLSX)

Table S2 Phenotype variation of 17 agronomic traits in 513

maize lines. a ANOVA, analysis of variance, showing the mean

square and degrees of freedom (in parentheses). The F-test was

applied to determine the significance level. Both the environments

and lines were fitted in the model as random effects. ** indicate

significance at level of 0.001; s.d., standard deviation. bPVE by Q,

the percentage of phenotypic variance explained by the subpop-

ulation structure.

(XLSX)

Table S3 IBD base projection and KNN imputation for

validation dataset.

(XLSX)

Table S4 The comparison of significantly associated loci with oil

concentration in dataset 1 (N = 368) and dataset 2 (N = 513).

*Alleles with underlines indicate rare alleles. NS: non-significant.

NA: no SNPs.

(XLSX)

Table S5 Cut off value (alpha = 5%) defined by 1000 permu-

tations and detected QTNs associated with three different traits

using MLM and A-D test based on 50K SNPs, respectively.

(XLSX)

Table S6 The summary of significant SNP number detected by

Anderson-Darling test (A-D test, 2log P.7.05) and mixed linear

model (MLM, 2log P.4) in 513 maize inbreds. *shared SNPs and

loci detected by both methods.

(XLSX)

Table S7 Significant loci detected by A-D test. SS: Stiff stalk;

NSS: Non-stiff stalk; TST: Tropical-subtropical.

(XLSX)
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31. Beló A, Luck SD (2010) Association mapping for the exploration of genetic

diversity and identification of useful loci for plant breeding. In: Khalid M,

Günter K,editors. The handbook of plant mutation screening: mining of natural

and induced alleles. New York: John Wiley & Sons. Pp. 231–246.

32. Gallavotti A, Long JA, Stanfield S, Yang X, Jackson D, et al. (2010) The control

of axillary meristem fate in the maize ramosa pathway. Development 137:2849–

2856.

33. Li S, Zhao B, Yuan D, Duan M, Qian Q, et al. (2013) Rice zinc finger protein

DST enhances grain production through controlling Gn1a/OsCKX2 expres-

sion. Proc Natl Acad Sci U S A 110: 3167–3172.

34. Daetwyler HD, Wiggans GR, Hayes BJ, Woolliams JA, Goddard ME (2011)

Imputation of missing genotypes from sparse to high density using long-range

phasing. Genetics 189: 317–327.

35. Hao K, Chudin E, McElwee J, Schadt E (2009) Accuracy of genome-wide

imputation of untyped markers and impacts on statistical power for association

studies. BMC Genet 10: 27.

36. Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, et al. (2011) Genome-wide

association study of quantitative resistance to southern leaf blight in the maize
nested association mapping population. Nat Genet 43: 163–168.

37. Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested

association mapping of quantitative resistance to northern leaf blight in maize.
Proc Natl Acad Sci U S A 108: 6893–6898.

38. Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, et al. (2007) An Arabidopsis
example of association mapping in structured samples. PloS Genet 3: e4.
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